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Abstract— In this paper, we present stochastic optimization
techniques for empirical minimization over directed graphs.
Using a novel information fusion approach that utilizes both
row- and column-stochastic weights simultaneously, we show
that the proposed approach converges linearly to an error ball
around the optimal solution with a constant step-size. Moreover,
the algorithm converges to the optimal solution at O(1/k),
where k is the number of iterations, when decaying step-sizes
are chosen. In cases where column-stochastic weights cannot be
constructed, as they have stringent requirements, we present
an algorithm that only utilizes row-stochastic weights but at
the expense of eigenvector estimation. Finally, we illustrate the
theoretical results with the help of experiments with real data.

Index Terms— Stochastic optimization, Decentralized algo-
rithms, multi-agent systems, directed graphs

I. INTRODUCTION

In many signal processing, control, and machine learning
problems of emerging interest, the data is often collected
by geographically dispersed devices or is often stored on
different machines, thus giving rise to the need of scalable
learning and inference solutions that do not require com-
municating, storing, and processing all data at one single
entity. In addition, to leverage modern computing platforms,
advanced computational frameworks that use the communi-
cation and computation resources efficiently are particularly
favorable. Various programming models and implementa-
tions of master-worker configurations have been proposed,
such as MapReduce [1] and federated learning [2], that are
tailored for specific computing needs and environments. Such
architectures, although provide scalable solutions, may not
be desirable in certain scenarios: (i) since the master is
required to constantly push and pull information of very high
dimensions, it could potentially become a communication
bottleneck [3]; (ii) they are generally vulnerable to malicious
attacks; and, (iii) when enormous data is generated in a
local and streaming fashion from a large number of mobile,
geographically dispersed, heterogeneous devices, e.g., in the
Internet of Things (IoT), one needs a paradigm shift from
the master-worker to a peer-to-peer network.

Peer-to-peer architectures, see Fig. 1 (Right), eliminate
the need for specialized master nodes or coordinators and
are based on flexible, non-deterministic, local communica-
tion, and thus naturally provides promising solutions to the
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Fig. 1. (Left) A master-worker architecture. (Right) Decentralized
consensus-based optimization.

aforementioned issues. Decentralized optimization applies to
ad hoc peer-to-peer networks with limited communication
and computation resources and has been an active topic
of research in control and signal processing literature for
the past several decades. Consider a sensor network or
a network of robots, comprised of inexpensive, battery-
operated, wireless devices, deployed in an arbitrary fashion,
e.g., by an aircraft in a battlefield, mixed in concrete to
monitor strength and damage in buildings, or buried under
ground to monitor soil properties in a remote forest. These
applications are giving rise to large-scale multi-agent ma-
chine learning problems where the application constraints
do not allow for frequent battery recharges, expensive on-
board computation, highly-sophisticated antennas, or manual
re-installation/maintenance of the equipment. The communi-
cation is also not with the help of physical cables but is
wireless, often in unfriendly/inaccessible territories, that is
subject to packet drops, interference, fading, and equipment
malfunction, in general. Such wireless networks only allow
a minimal set of assumptions on connectivity, topology,
synchrony, latency, etc., and thus peer-to-peer ad hoc and
unstructured architectures are often used to model the un-
derlying communication.

This paper focuses on decentralized optimization where
nodes collaborate to solve empirical risk minimization prob-
lems by communicating on proximity-based graphs, formed
naturally by interactions among nearby agents. Having such
ad hoc networks also paves the way to address imperfect
cases, e.g., when the communication links are subject to
noise and the data packets drop randomly. Much of the
existing work on decentralized stochastic optimization, see
the next paragraph, is restricted to undirected networks.
In practice, however, it may not always be desirable to
deploy bidirectional communication. The nodes (devices), for
example, in an IoT setting, can be largely heterogeneous and
of different physical nature. Some nodes may have limited
broadcast power and are only capable of sending information
to their nearby nodes; they are, however, still potentially
able to receive information from nodes in a much wider
range. Besides, when communication is relatively expensive
compared with computation or when some nodes suffer from
communication overload, a sparse communication topology



is favorable that can be achieved by eliminating some com-
munication links. These scenarios lead to directed networks
that are much more flexible to both design and implement.
In this context, the specific aim of this paper is to develop
algorithms that are applicable to directed graphs.

Related Work: Finite-sum optimization has been a topic
of significant research in the areas of signal processing, con-
trol, and machine learning, see e.g., [3]–[8]. Decentralized
solutions require two key ingredients: (i) consensus, i.e.,
reaching agreement; and, (ii) optimality, i.e., agreement on
the optimal. Naturally, consensus is used as the basic block
of decentralized optimization on top of which a gradient
correction (innovation) is added to steer the agreement to
the optimal. Initial work thus closely follows the progress
in consensus over undirected graphs [9]–[16]. Optimization
over undirected graphs (built on doubly-stochsatic (DS)
weights) can be found in [10], [17]–[22]. For unbalanced
directed graphs, it is not possible to construct DS weights
and thus optimization over digraphs [23]–[32] builds on
consensus with non-DS weights [33]–[37]. Required now
is a division involving the Perron eigenvector of the non-
DS weight matrix, see e.g., [27], [29]–[31]. Decentralized
stochastic optimization can be found in [38]–[41]. These
methods converge sub-linearly and outperform their deter-
ministic counterparts when local data batches are large.

We now describe the rest of this paper. Section II formu-
lates the decentralized empirical risk minimization problem
and provides necessary assumptions. Section III develops
the corresponding algorithm that is applicable to directed
graphs and provides intuitive analysis arguments and gener-
alizations. Section IV provides numerical experiments while
Section V concludes the paper.

II. PROBLEM FORMULATION

In parametric learning problems [42], the goal of a typical
machine learning system is to train a model θ ∈ Rp, that
maps an input data point, x ∈ Rdx , to its corresponding
output, y ∈ Rdy . The setup requires defining a loss func-
tion, l(x; (θ,y)), which represents the loss incurred by the
model θ on the data (x,y). In the setup of statistical machine
learning, we assume that each data point (x,y) belongs to
a joint probability distribution P(x,y). Ideally, we would
like to find the optimal model parameter θ̃

∗
by minimizing

the following risk (expected loss) function F̃ (θ). However,
the true distribution P(x,y) is often hidden or intractable in
practice. In supervised machine learning, one usually has
access to a large set of training data points {xi,yi}mi=1,
which can be considered as the independent and identically
distributed (i.i.d.) realizations from the corresponding data
distribution. The average of the losses incurred by the
model θ on a finite set of the training data {xi,yi}mi=1,
known as the empirical risk, serves as an appropriate sur-
rogate objective function for the expected risk F̃ (θ).

When the data is further distributed, the empirical risk
problem is formulated on a network of nodes. To this aim,
consider n nodes, such as machines, devices, or decision-
makers, interconnected over an arbitrary graph, G = (V, E),

not necessarily undirected, where V = {1, · · · , n} is the
set of nodes, and E ⊆ V × V is the collection of ordered
edges, (i, j), i, j ∈ V , such that node j can send information
to node i, i.e., j → i. Each node i holds a private and local
cost function fi : Rp → R, which is not available at any other
node. Specifically, each node i is a computing resource and
stores/collects a local batch of mi training data samples that
are possibly private and are not allowed to share with other
nodes. The global objective is to find the best model θ∗ by
leveraging all data in the entire network, formally written as
the decentralized empirical risk minimization problem:

P1: θ∗ = argmin
θ∈Rp

F (θ),

F (θ) =
1

n

n∑
i=1

fi(θ) ,
1

n

n∑
i=1

( 1

mi

mi∑
j=1

fi,j(θ)
)
,

where fi(θ) , 1
mi

∑mi

j=1 fi,j(θ) is the local empirical risk
corresponding to the mi local training samples at node i.

A. Assumptions

Before we proceed, we provide the definitions and assump-
tions required to present the proposed algorithm.

Definition 1: A function fi : Rp → R is called l-smooth
if its gradient is Lipschitz-continuous, i.e., ∀θ1,θ2 ∈ Rp, we
have, for some positive constant l > 0,

‖∇fi(θ1)−∇fi(θ2)‖ ≤ l‖θ1 − θ2‖.
Definition 2: A function f : Rp → R is called µ-

strongly-convex if ∀θ1,θ2 ∈ Rp, we have, for some positive
constant µ > 0,

f(θ2) ≥ f(θ1) +∇f(θ1)>(θ2 − θ1) +
µ

2
‖θ1 − θ2‖2.

We define Sµ,l as the class of functions that are l-smooth
and µ-strongly-convex. It is important to note that for fi ∈
Sµ,l, there exits a unique global minimizer of fi; furthermore,
if each fi ∈ Sµ,l, then F = 1

m

∑m
i=1 fi ∈ Sµ,l. Various

popular machine learning models belong to the class Sµ,l,
such as regularized linear regression, logistic regression, and
support vector machines. The algorithm provided in this
paper makes the following assumptions.

Assumption 1: Each local cost function is µ-strongly-
convex and l-smooth, i.e., each fij ∈ Sµ,l.
Under Assumption 1, F ∈ Sµ,l and therefore has a unique
global minimizer θ∗. We further assume that all mini-batch
stochastic gradients have bounded variance, precisely written
as follows.

Assumption 2: The following holds for all nodes i ∈ V
and all time k:

E
[∥∥∇ik −∇fi(θik)

∥∥2
2
|θik
]
≤ σ2,

where σ > 0 is some positive constant and ‖ · ‖2 is the
standard Euclidean norm.
Assumption 2 is standard in the stochastic optimization
literature [43].



III. STOCHASTIC OPTIMIZATION IN DIRECTED
NETWORKS

We now describe a recently proposed AB algorithm [44],
[45] and its stochastic variant SAB [46], both of which
remove the need of eigenvector estimation in methods [?]
based on the push-sum algorithm [?], while still being
applicable to arbitrary strongly-connected directed graphs.
The AB algorithm is based on the gradient-tracking tech-
nique [?] and a novel application of both row and column-
stochastic weights. In the AB algorithm, each node i main-
tains two vectors θik, an estimate of θ∗, and dik, a gradient
tracker, both in Rp, iteratively updated as

θik+1 =
∑
j∈N in

i

aijθ
j
k − αd

i
k, (1a)

dik+1 =
∑
j∈N in

i

bijd
j
k +∇fi

(
θik+1

)
−∇fi

(
θik
)
, (1b)

where di0 = ∇fi
(
θi0
)
,∀i. In (1a) and (1b), A = {aij}

and B = {bij} are respectively the row1 and column-
stochastic weight matrices associated with the directed
graph G. Since doubly-stochastic weights are no longer
required in both updates (1a) and (1b), AB is naturally
applicable to arbitrary strongly-connected graphs, undirected
and directed alike. It is shown in [44], [45] thatAB converges
linearly to the global minimizer of F , when each fi ∈ Sµ,l.
A. Sketch of the Analysis

To explain the exact convergence of AB, we first write it
in a vector-matrix format as follows:

θk+1 = Aθk − αdk, (2a)
dk+1 = Bdk +∇f(θk+1)−∇f(θk), (2b)

where θk,dk,∇f(θk) concatenate their corresponding local
variables {θk}, {dik}, {∇fi(θ

i
k)}. It can be shown that the

row-stochastic weight matrix A in (2a) moves the estimates
of all nodes towards their weighted average [?], i.e., θik →
θ̂k, where θ̂k =

∑n
i=1[πa]iθ

i
k and πa is the left Perron

vector of A. We then multiply π>a from both sides of (2a)
to obtain the dynamics that governs the evolution of θ̂k as
follows:

θ̂k+1 = θ̂k − α
n∑
i=1

[πa]id
i
k. (3)

From (2b), it can be verified that
∑n
i=1 d

i
k =

∑n
i=1∇fi(θ

i
k),

i.e., the sum of local gradient trackers preserves the sum of
local gradients [44]. It can also be shown that [47]: ∀i ∈ V ,

lim
k→∞

∥∥∥∥∥dik − [πc]i
1

n

n∑
i=1

∇fi(θik)

∥∥∥∥∥
2

= 0. (4)

Combining (3) and (4), we obtain the (approximate) gradient
corrections on θ̂k (when k � 1):

θ̂k+1 = θ̂k − α

(
n∑
i=1

[πa]i[πc]i

)(
1

n

n∑
i=1

∇fi(θik)

)
, (5)

1Row-stochastic weights are easy to construct as each node can arbitrarily
assign weights to its incoming information.

which becomes the full-batch centralized gradient descent
as θik → θ̂k, and thus leads to the exact geometric conver-
gence of AB. Therefore, it can be concluded that in AB,
the row-stochasticity of the weight matrix A guarantees the
agreement while the column-stochasticity of weight matrix B
guarantees the optimality. This is consistent with our previ-
ous discussion.

B. Stochastic AB
Finally, the stochastic gradient variant of AB, termed

as SAB, is presented in Algorithm 1.

Algorithm 1 SAB at each node i

Require: θ0
i ∈ Rp, α > 0, row-stochastic weights A =

{aij} and column-stochastic weights B = {bij} associ-
ated with G, di0 = ∇i0.

1: for k = 0, 1, 2, · · · do
2: Sample (without replacement) a mini-batch T ik ⊆
T i = {1, · · · ,mi}

3: Compute the local stochastic gradient ∇ik ,
1
|T i

k |
∑
j∈T i

k
∇fi,j

(
θik
)
.

4: Update: θik+1 =
∑
j∈Ni

aijθ
j
k − αdik

5: Update: dik+1 =
∑
j∈Ni

bijd
j
k +∇ik+1 −∇ik

6: end for

Under the Assumptions 1 and 2 and a sufficiently small
constant step-size α, the convergence of SAB is given as
the following [46]:

lim sup
k→∞

1

n

n∑
i=1

E
[∥∥θik − θ∗

∥∥2
2

]
= (1−O (µα))

k
+O

(
σ2
)
.

(6)

C. Generalization of AB and SAB
The AB algorithm provides a fundamental insight by

unifying various gradient-tracking based algorithms. First, it
is straightforward to obtain the algorithm in [?] DOGT (??)
from AB by replacing both the row-stochastic A and the
column-stochastic B with doubly-stochastic weights. To
derive the relationships between AB and gradient-tracking
based approaches over directed graphs [?], we define a state
transformation with the help of the left Perron vector πa
of A. Let Πa be a diagonal matrix with πa on its main
diagonal. We then obtain a transformedAB with zk , Πaθk:

zk+1 = B̃zk − αΠadk, (7a)

θk = Π−1a zk, (7b)
dk+1 = Bdk +∇f(θk+1)−∇f(θk), (7c)

where B̃ , ΠaAΠ−1a . It can be shown that B̃ is in fact
column-stochastic and B̃πa = πa. The transformed AB (7)
has two weight matrices, B and B̃, that are both column-
stochastic and associated with the directed graph G. Note
however that the decentralized implementation of (7) requires
the right Perron vector πa of a column-stochastic matrix B̃,
which is global information and not locally known to any
node. Thus, one can use local iterative eigenvector estimators



to replace to the corresponding divisions in Π−1a , similar
to the procedure used in SGP [?]. The resulting algorithm
is well-known as ADD-OPT and Push-DIGing [?], [48] in
the literature and is a gradient-tracking extension of SGP. A
similar state transformation on the dk+1-update in (2b) leads
to another gradient-tracking based algorithm with only row-
stochastic weights; details on such procedures can be found
in [49].

IV. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to illus-
trate the convergence properties of the consensus-based op-
timization algorithms in the context of decentralized training
of a regularized logistic regression model [42] to classify
the hand-written digits {3, 8} from the MNIST dataset.
Each digit image is represented by a vector in R784. We
generate a connected undirected graph, Gun, and a strongly-
connected directed graph, G, using nearest-neighbor rules,
both of which have n = 50 nodes. Doubly-stochastic
weights are generated using the Metroplis method [50], while
row-stochastic weights A = {aij} and column-stochastic
weights B = {bij} are generated with the uniform weighting
strategy: aij = 1/|N in

i |, bij = 1/|N out
j |,∀i, j. We note that

both weighting strategies are applicable to undirected graphs
but only the uniform strategy can be used over directed
graphs. In our setting, each node i has access to mi = 20
training data, {xi,j , yi,j}mi

j=1 ⊆ R784×{−1,+1}, where xij
is the feature vector and yij is the corresponding binary
label. The nodes cooperatively solve the following smooth
and strongly-convex optimization problem:

min
b∈R784, c∈R

F (b, c) =

n∑
i=1

1

mi

mi∑
j=1

ln
[
1 + exp

{
−(b>xij + c)yij

}]
+
λ

2
‖b‖22.

To compare applicable algorithms, we plot the average resid-
ual 1

n

∑n
i=1 ‖θ

i
k − θ∗‖22 across all nodes and the test error

rate versus the number of local epochs (number of effective
passes of local data batch). Over the undirected graph Gun,
we compare the performance of DSGD, DSOGT, and SAB.
Over the directed graph G, we compare the performance
of SGP and SAB. The step-sizes for all methods are fixed
as 0.02. The experimental results are shown in Fig. 2 and
Fig. 3. It can observed that DSGD, DSOGT, SGP and SAB

Fig. 2. Undirected graphs: average residual (left) and test error rate (right)
versus number of local epochs.

are all effective methods for training the logistic regression
classifier. DSGD and SGP have larger steady-state residuals
due to their inherent bias, compared with gradient-tracking
methods, DSOGT and SAB. Moreover, the convergence of

Fig. 3. Directed graphs: average residual (left) and test error rate (right)
versus number of local epochs.

SGP is less stable compared with SAB because of the non-
linearity of the push-sum update in SGP. These results are
consistent with our previous discussions.

V. CONCLUSIONS

In this paper, we describe a decentralized solution to
empirical risk minimization problems when the data samples
are distributed over a network of arbitrarily-connected nodes.
Our particular focus is on directed graphs, i.e., when the
nodes in the network may not be able to engage in bidi-
rectional communication. To this aim, we discuss the SAB
algorithm that utilizes a novel application of row and column-
stochastic weights. Simulation results illustrate the discus-
sion.
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