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Abstract
We focus on the problem of black-box adversarial
attacks, where the aim is to generate adversarial
examples for deep learning models solely based
on information limited to output labels (hard la-
bel) to a queried data input. We use Bayesian opti-
mization (BO) to specifically cater to scenarios in-
volving low query budgets to develop efficient ad-
versarial attacks. Issues with BO’s performance in
high dimensions are avoided by searching for ad-
versarial examples among low-frequency vectors
from the Fast Fourier Transform (FFT) basis. Our
proposed approach achieves better performance to
state of the art black-box adversarial attacks that
require orders of magnitude more queries than
ours.

1. Introduction
Neural networks are now well-known to be vulnerable to
adversarial examples: additive perturbations that, when
applied to the input, change the network’s output classifica-
tion (Goodfellow et al., 2014). Work investigating this lack
of robustness to adversarial examples often takes the form
of a back-and-forth between newly proposed adversarial
attacks, methods for quickly and efficiently crafting adver-
sarial examples, and corresponding defenses that modify the
classifier at either training or test time to improve robustness.
The most successful adversarial attacks use gradient-based
optimization methods (Goodfellow et al., 2014; Madry et al.,
2017), which require complete knowledge of the architec-
ture and parameters of the target network; this assumption
is referred to as the white-box attack setting. Conversely,
the more realistic black-box setting requires an attacker to
find an adversarial perturbation without such knowledge:
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information about the network can be obtained only through
querying the target network, i.e., supplying an input to the
network and receiving the corresponding output. In terms
of information obtained from queries, it can further cate-
gorized into soft-label and hard-label. As far as soft-label
information is concerned, the information for a query is
typically in terms of the logit values or the evaluation of
the loss function at that particular input. The more realistic
and challenging of the two, i.e., hard-label information ob-
tained from a query is just the label of the input fed into the
network.

In real-world scenarios, it is extremely improbable for an
attacker to have unlimited bandwidth to query a target clas-
sifier. In evaluation of black box attacks, this constraint is
usually formalized via the introduction of a query budget:
a maximum number of queries allowed to query the model
per input, after which an attack is considered to be unsuc-
cessful. Several recent papers have proposed attacks specif-
ically to operate in this query-limited context (Ilyas et al.,
2019; 2018; Chen et al., 2017; Tu et al., 2019; Moon et al.,
2019; Cheng et al., 2018; 2020); nevertheless, these papers
typically consider query budgets in the order of 10,000 or
100,000. This leaves open questions as to whether black-
box attacks can successfully attack a deep learning based
classifier in severely query limited settings, e.g., with query
budgets below 1000. Furthermore, restricting the informa-
tion available from querying to be hard-label only, makes
the aforementioned direction even more challenging. In
such a query limited regime, it is natural for an attacker to
use the entire query budget, so we ask the pertinent question:
In a constrained query limited setting, can one design query
efficient yet successful black box adversarial attacks, where
the queried information is restricted to being hard-label?

This work proposes a hard-label black-box attack method
grounded in Bayesian optimization (Jones et al., 1998; Fra-
zier, 2018), which has emerged as a state of the art black-
box optimization technique in settings where minimizing
the number of queries is of paramount importance. Straight-
forward application of Bayesian optimization to the problem
of finding adversarial examples is not feasible: the input
dimension of even a small neural network-based image clas-
sifier is orders of magnitude larger than the standard use
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case for Bayesian optimization. Rather, we show that we
can bridge this gap by performing Bayesian optimization
in a reduced-dimension setting by considering structured
subspaces and mapping it back to full input space to obtain
our final perturbation. We explore several mapping tech-
niques and find that reducing the search space to a structured
subspace composed of Fast Fourier Transform (FFT) basis
vectors and a simple nearest-neighbor upsampling method
allows us to sufficiently reduce the optimization problem di-
mension such that Bayesian optimization can find adversar-
ial perturbations with more success than existing hard-label
black-box attacks in query-constrained settings.

We compare the efficacy of our adversarial attack with a
set of experiments attacking three of the most commonly
used pretrained ImageNet (Deng et al., 2009) classifiers:
ResNet50 (He et al., 2015), Inception-v3 (Szegedy et al.,
2015), and VGG16-bn (Simonyan & Zisserman, 2014).
We perform both `∞ and `2 norm constrained black-box
attacks. Results from these experiments show that with
small query budgets upto 1000, the proposed method Bayes-
Attack achieves significantly better attack success rates than
those of existing methods, and does so with far smaller
average query counts.

Furthermore, ablation experiments are performed so as to
compare the effectiveness of the configurations considered
in our attack setup, i.e., selection of the structured low di-
mensional subspace and mapping techniques to generate
adversarial perturbations in original image space. Given
these results we argue that, despite being a simple approach
(indeed, largely because it is such a simple and standard ap-
proach for black-box optimization), Bayesian Optimization
should be a standard baseline for any hard-label black-box
adversarial attack task in the future, especially in the small
query budget regime.

2. Related Work
Within the black-box setting, adversarial attacks can be
further categorized by the exact nature of the information
received from a query. This work exists in the restrictive
hard-label or decision-based setting, where queries to the
network yield only the predicted class of the input, with
no other information about the network’s final layer output.
The most successful work in this area is OPT attack (Cheng
et al., 2018), which reformulates the problem as a search for
the direction of the nearest decision boundary and employs a
random gradient-free method, and Sign-OPT attack (Cheng
et al., 2020), which refines this approach by replacing binary
searches with optimization via sign SGD. In Boundary At-
tack (Brendel et al., 2017), attacks are generated via random
walks along the decision boundary with rejection sampling.
Several other attacks have extended this work and refined its
query efficiency: HopSkipJumpAttack (Chen et al., 2019)

does so with improved gradient estimation, while Guessing
Smart (Brunner et al., 2019) incorporates low-frequency per-
turbations, region masking, and gradients from a surrogate
model. In both cases, significant issues remain: the former
still requires queries numbering above 10,000 to produce
adversarial examples with small perturbations, and the latter
relies on resources required to train a surrogate model.

Most work in black-box adversarial attacks has been ded-
icated to score-based or soft label attacks, where queries
return the entire output layer of the network, either as logits
or probabilities. Relative to hard-label attacks, queries in
the soft label setting receive a large amount of information
from each query, making them amenable to approaches from
a wide variety of optimization fields and techniques. The
most popular avenue is maximizing the network loss with
zeroth-order methods via derivative-free gradient estimation,
such as those proposed in Ilyas et al. (2019), which uses
time-dependent and data-dependent priors to improve the
estimate, as well as Ilyas et al. (2018), which estimates gradi-
ents using natural evolution strategies (NES). Other methods
search for the best perturbation outside of this paradigm;
Moon et al. (2019) casts the problem of finding an adversar-
ial perturbation as a discrete optimization problem and uses
local search methods to solve. These works all search for
adversarial perturbations within a search space with a hard
constraint on perturbation size; others (Chen et al., 2017; Tu
et al., 2019; Guo et al., 2019) incorporate a soft version of
this constraint and perform coordinate descent or random
walks to decrease the perturbation size while ensuring the
perturbed image is misclassified.

A separate class of transfer-based attacks train a second,
fully-observable substitute network, attack this network with
white-box methods, and transfer these attacks to the original
target network. These may fall into one of the preceding
categories or exist outside of the distinction: in Papernot
et al. (2016), the substitute model is built with score-based
queries to the target network, whereas Liu et al. (2016)
trains an ensemble of models without directly querying
the target network at all. These methods come with their
own drawbacks: they require training a substitute model,
which may be costly or time-consuming; attack success is
frequently dependent on similarity between substitute and
target networks; and overall attack success tends to be lower
than that of gradient-based methods.

Beyond these categories, we note that our method here sits
among several recent works that find improved success rates
and query efficiency from restricting their search for adver-
sarial perturbations to particular low-dimensional subspaces.
One common approach is to generate adversarial perturba-
tions from low-frequency noise, such as in Guo et al. (2018),
which improves existing attacks (Ilyas et al., 2018; Bren-
del et al., 2017) by confining searches to subspaces of low
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frequency basis vectors in the Discrete Cosine Transform
(DCT) basis, and in Brunner et al. (2019), which employs
a Perlin noise basis. In a similar vein, Ilyas et al. (2019)
exhibits that local spatial similarity of images, i.e., the ten-
dency of nearby pixels to be similar, extends to gradients,
and uses this observation to motivate focusing on tile-based
perturbations.

Finally, there has been some recent interest in leveraging
Bayesian optimization (BO) for constructing adversarial per-
turbations. For example, Zhao et al. (2019) uses BO to solve
the δ-step of an alternating direction of method multipliers
(ADMM) approach, Co et al. (2018) searches within a set
of procedural noise perturbations using BO and Gopakumar
et al. (2018) uses BO to find maximal distortion error by
optimizing perturbations defined using 3 parameters. On
the other hand, prior work in which Bayesian optimiza-
tion plays a central role, the use cases and experiments
are performed only in relatively low-dimensional settings,
highlighting the main challenge of its application: Suya
et al. (2017) examines an attack on a spam email classifier
with 57 input features, and in Co (2017) image classifiers
are attacked but notably the attack does not scale beyond
MNIST classifiers. In contrast to these past works, the main
contribution of this paper is to show that Bayesian Optimiza-
tion presents as a scalable, query-efficient alternative for
large-scale hard-label black-box adversarial attacks when
combined with searching in structured low dimensional sub-
spaces and employing mapping techniques to get the final
adversarial perturbation.

3. Problem Formulation
The following notation and definitions will be used through-
out the remainder of the paper. Let F be the target neural
network. We assume that F : Rd′ → {1, . . .K} is a K-
class image classifier that takes normalized RGB inputs:
x ∈ Rd′ where each channel of each pixel is bounded be-
tween 0 and 1, y ∈ {1, . . . ,K} denotes the original label,
and the corresponding output F (x) is the final output label
or class.

Rigorous evaluation of an adversarial attack requires careful
definition of a threat model: a set of formal assumptions
about the goals, knowledge, and capabilities of an attacker
(Carlini & Wagner, 2017). We assume that, given a cor-
rectly classified input image x, the goal of the attacker is to
find a perturbation δ such that x + δ is misclassified, i.e.,
F (x + δ) 6= F (x). We operate in the hard-label black-box
setting, where we have no knowledge of the internal work-
ings of the network, and a query to the network F yields
only the final output class (top-1 prediction).To enforce the
notion that the adversarial perturbation should be small, we
take the common approach of requiring that ‖δ‖p be smaller
than a given threshold ε in some `p norm.In this work, we

specifically focus on `2 and `∞ norm.Finally, we let t denote
the query budget, i.e., if an adversarial example is not found
after t queries to the target network, the attack is considered
to be unsuccessful.

In line with most adversarial attack setups, we pose the
attack as a constrained optimization problem, defined below:

max
δ

f(x, y, δ) (1)

subject to ‖δ‖p ≤ ε and (x + δ) ∈ [0, 1]d
′
,

where f(x, y, δ) =

{
0 if F (x + δ) 6= y

−1 if F (x + δ) = y

Crucially, the input x + δ to f is an adversarial example for
F if and only if f(x, y, δ) = 0.

Though our objective function is straightforward, we em-
pirically show that it leads to significant performance im-
provements over the current state of the art for hard-label
black-box attacks for both `∞ and `2 threat models.

We briefly note that the above threat model and objective
function were chosen for simplicity and for ease of di-
rectly comparing with other black box attacks, but the attack
method we propose is compatible with many other threat
models. For example, we may change the goals of the at-
tacker or measure δ in `1 norm instead of `2 and `∞ norms
with appropriate modifications to the objective function and
constraints in equation 1.

4. Proposed Attack Method
In this section, we present the proposed method for solv-
ing the optimization problem in equation 1.We begin with
a brief description of Bayesian optimization (Jones et al.,
1998) followed by its application to generating black-box
adversarial examples. Finally, we describe our method for
attacking a classifier with high input dimension (e.g. Ima-
geNet) in a query-efficient manner.

4.1. Bayesian Optimization

Bayesian Optimization (BO) is a method for black box opti-
mization particularly suited to problems with low dimension
and expensive queries. Bayesian Optimization consists of
two main components: a Bayesian statistical model and an
acquisition function. The Bayesian statistical model, also
referred to as the surrogate model, is used for approximat-
ing the objective function: it provides a Bayesian posterior
probability distribution that describes potential values for
the objective function at any candidate point. This posterior
distribution is updated each time we query the objective
function at a new point. The most common surrogate model
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for Bayesian optimization are Gaussian processes (GPs)
(Rasmussen & Williams, 2005), which define a prior over
functions that are cheap to evaluate and are updated as and
when new information from queries becomes available. We
model the objective function h using a GP with prior dis-
tribution N (µ0,Σ0) with constant mean function µ0 and
Matern kernel (Shahriari et al., 2016; Snoek et al., 2012) as
the covariance function Σ0, which is defined as:

Σ0(x,x′) = θ20 exp(−
√

5r)

(
1 +
√

5r +
5

3
r2
)
,

r2 =

d′∑
i=1

(xi − x′i)2

θ2i

where d′ is the dimension of input and {θi}d
′

i=0 and µ0 are
hyperparameters. We select hyperparameters that maximize
the posterior of the observations under a prior (Shahriari
et al., 2016; Frazier, 2018).

The second component, the acquisition functionA, assigns a
value to each point that represents the utility of querying the
model at this point given the surrogate model. We sample
the objective function h at xn = arg maxxA(x|D1:n−1)
where D1:n−1 comprises of n − 1 samples drawn from h
so far. Although this itself may be a hard (non-convex)
optimization problem to solve, in practice we use a standard
approach and approximately optimize this objective using
the LBFGS algorithm. There are several popular choices
of acquisition function; we use expected improvement (EI)
(Jones et al., 1998), which is defined as

EIn(x) = En [max (h(x)− h∗n, 0)] ,

where En[·] = E[·|D1:n−1] denotes the expectation taken
over the posterior distribution given evaluations of h at
x1, · · · ,xn−1, and h∗n is the best value observed so far.

Bayesian optimization framework as shown in Algorithm
2 runs these two steps iteratively for the given budget of
function evaluations. It updates the posterior probability
distribution on the objective function using all the available
data. Then, it finds the next sampling point by optimizing
the acquisition function over the current posterior distribu-
tion of GP. The objective function h is evaluated at this
chosen point and the whole process repeats.

In theory, we may apply Bayesian optimization directly to
the optimization problem in equation 1 to obtain an adversar-
ial example, stopping once we find a point where the objec-
tive function reaches 0. In practice, Bayesian optimization’s
speed and overall performance fall dramatically as the input
dimension of the problem increases. This makes running
Bayesian optimization over high dimensional inputs such
as ImageNet (input dimension 3 × 299 × 299 = 268203)
practically infeasible; we therefore require a method for
reducing the dimension of this optimization problem.

4.2. Bayes-Attack: Generating Adversarial Examples
using Bayesian Optimization

Black-box attack methods tend to require a lot of queries
because of the search space being high dimensional. The
query complexity of these attack methods depends on the
adversarial subspace dimension compared to the original
image space. These methods can be improved by finding
a structured low dimensional subspace so as to make the
black-box optimization problem feasible and thereby result-
ing in adversarial examples with fewer queries and high
success rates. In this section, we define two low dimen-
sion subspaces favorable for generating `2 and `∞ norm
constrained hard label black-box attacks.

4.2.1. LOW DIMENSIONAL SUBSPACE FOR `2 NORM
CONSTRAINED ATTACK

To generate `2 norm constrained adversarial examples, our
attack method utilizes low frequency fast Fourier transform
(FFT) basis vectors. FFT is a linear transform which, when
applied to a natural image, results in a representation in
frequency space by sine and cosine basis vectors. For a
given image x ∈ Rd×d, the output of the FFT transform
X := FFT(x) is defined by

X[u, v] =
1

d

d−1∑
i=0

d−1∑
j=0

x[i, j] exp

[
−j 2π

d
(u · i+ v · j)

]
(2)

where 1
d is the normalization constant to obtain isometric

transformation, i.e., ‖x‖2 = ‖FFT(x)‖2. The inverse fast
fourier transform x = IFFT(X) is defined by:

x[i, j] =
1

d

d−1∑
u=0

d−1∑
v=0

X[u, v] exp

[
j

2π

d
(u · i+ v · j)

]
(3)

The isometric property holds in reverse direction too, i.e.
‖X‖2 = ‖IFFT(X)‖2. For multi-channel (colored) images,
both FFT and IFFT can be applied channel wise indepen-
dently. The low frequency cosine and sine basis vectors are
represented by small u, v values in real and complex compo-
nents of X(u, v) respectively. To restrict to low-frequencies,
we allow only elements in the top-left brdc×brdc square of
X to have nonzero entries, where r ∈ (0, 1] is a parameter
that controls how large we allow our search space to be;
that is, we enforce X(u, v) = 0 if u > brdc or v > brdc.
The adversarial perturbation is then obtained by computing
IFFT(X).

To further reduce the dimension of this search space, we
may also omit all sine or all cosine FFT basis vectors by
respectively constraining the real or imaginary parts of X to
be zero. An ablation study exploring the effect of removing
sine or cosine FFT basis vectors on performance is shown
in Section 5.4.1.
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Algorithm 1 Objective Function

1: procedure OBJ-FUNC(x0, y0, δ)
2: // ε is the given perturbation
3: δ ← Πp

B(0,ε)(δ) . Projecting perturbation on
`p-ball

4: δ′ ← map(δ) . Mapping perturbation from low
dimension subspace to full input space

5: v ← f(x0, y0, δ
′) . Quering the model

6: return v

4.2.2. LOW RESOLUTION SUBSPACE FOR `∞ NORM
CONSTRAINED ATTACK

Our method uses a data dependent prior (Ilyas et al., 2019)
to reduce the search dimension of the perturbation for gener-
ating `∞ norm constrained adversarial examples. We empir-
ically show that we can utilize the property of spatial local
similarity in images to generate adversarial perturbations.
For a given image x ∈ Rd×d, we search for perturbations
in a lower resolution image space X ∈ Rbrdc×brdc where
r ∈ (0, 1] and use nearest neighbor interpolation (NNI)
x′ = NNI(X) to obtain the final adversarial perturbation.
We note that x′ 6= x. The NNI transformation leads to
equivalent `∞ norms, i.e., ‖X‖∞ = ‖NNI(X)‖∞. For
multi-channel images, NNI can be applied channel-wise
independently.

4.2.3. SEARCHING IN LOW DIMENSION SUBSPACE

We use Bayesian optimization to search for the perturbation
in low dimension subspace (brdc × brdc) where r ∈ (0, 1]
and then use the relevant mapping (IFFT for `2 or and NNI
for `∞) to obtain the adversarial perturbation in the original
image space. This helps in reducing the query complexity
for our attack framework, due to the reduction of the search
space to a structured low dimensional subspace.

We define the objective function for running the Bayesian op-
timization in low dimension in Algorithm 1. We let Πp

B(0,ε)

be the projection onto the `p ball of radius ε centered at
origin. Our method maps the learned perturbation in low di-
mension subspace back to original input space to obtain the
adversarial perturbation. We maintain the `p norm constraint
by projecting the low dimension subspace perturbation on a
`p ball of radius ε. Since, our mapping techniques (IFFT for
`2 and NNI for `∞) do not change their respective norms,
the final adversarial perturbation obtained after mapping to
original input space also follows the `p constraint.

We describe the complete algorithm in Algorithm 2 where
x0 ∈ Rd×d and y0 ∈ {1, . . . ,K} denote the original in-
put image1 and label respectively. The goal is to learn an

1For simplicity, we assume a 2D image here, our method can
be easily applied to multi-channel images.

adversarial perturbation δ ∈ Rbrdc×brdc in much lower di-
mension, i.e., r << 1. We begin with a small dataset D =
{(δ1, v1), · · · , (δn0 , vn0)} where each δn is a brdc × brdc
perturbation sampled from a given distribution and vn is the
function evaluation at δn i.e vn = OBJ-FUNC(x0, y0, δn).
We iteratively update the posterior distribution of the GP us-
ing all available data and query new perturbations obtained
by maximizing the acquisition function over the current
posterior distribution of GP until we find an adversarial per-
turbation or run out of query budget. The Bayesian optimiza-
tion iterations run in low dimension subspace brdc × brdc
but for querying the model we project and map to the origi-
nal image space and then add the perturbation to the original
image as shown in Algorithm 1 to get the perturbed image
to conform to the input space of the model. To generate
a successful adversarial perturbation, it is necessary and
sufficient to have vt ≥ 0, as described in Section 3. We
call our attack successful with t queries to the model if the
Bayesian optimization loop exits after t iterations (line 12 in
Algorithm 2), otherwise it is unsuccessful. Finally, we note
that the final adversarial image can be obtained by mapping
the learned perturbation back to the original image space
and adding to the original image as shown in Figure 1. For
multi-channel image, the low dimension subspace is of form
3× brdc × brdc and the whole algorithm works the same
way.

In this work, we focus on `∞ and `2-norm perturbations,
where the respective projections are defined as:

Π∞B(x0,ε)
(x) = min {max{x0 − ε,x},x0 + ε} ,

Π2
B(x0,ε)

(x) = arg min
‖y−x0‖2≤ε

‖y − x‖2

where ε is the given perturbation bound.

The initial choice of the dataset D to form a prior can be
done using standard normal distribution, uniform distribu-
tion or even in a deterministic manner (e.g. with Sobol
sequences).

5. Experiments
Our experiments focus on the untargeted attack setting
where, given an image correctly classified by the model,
the goal is to produce an `p-constrained perturbation such
that applying this perturbation to the original image causes
misclassification. We evaluate both `∞ and `2 norm con-
strained hard label black-box attacks. We primarily consider
performance of Bayes-Attack on ImageNet classifiers and
compare its performance to other black-box attacks with re-
spect to success rate over a given query budget. To compare
performance, we randomly selected a subset of 1000 images,
normalized to [0, 1], from the ImageNet validation set. In
all experiments in this section, attacks are performed on this
fixed set of images. We primarily compare performance
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Algorithm 2 Adversarial Attack using Bayesian Optimization

1: procedure BAYES-ATTACK(x0, y0)
2: D = {(δ1, v1), · · · , (δn0

, vn0
)} . Quering randomly chosen n0 points.

3: Update the GP on D . Updating posterior distribution using available points
4: t← n0 . Updating number of queries till now
5: while t ≤ T do
6: δt ← arg maxδ A(δ | D) . Optimizing the acquisition function over the GP
7: vt ← OBJ-FUNC(x0, y0, δ) . Querying the model
8: t← t+ 1
9: if vt < 0 then

10: D ← D ∪ (δt, vt) and update the GP . Updating posterior distribution
11: else
12: return δt . Adversarial attack successful
13: return δt . Adversarial attack unsuccessful

Upsampling x 0.1 +

Adversarial perturbation Original Image
Label: white wolf

Final adversarial image
Label: shower curtain

Low-dimension perturbation

Figure 1. An illustration of a black-box adversarial attack performed by the proposed method BAYES-ATTACK on RESNET50 trained on
ImageNet. Images from the left: first figure shows the learnt perturbation in low dimension d′ = 972(3× 18× 18); second figure is the
final adversarial perturbation (3× 224× 224) obtained by using nearest neighbor upsampling; third figure is the original image (note that
the input size for RESNET50 is 3× 224× 224) which is initially classified as white/arctic wolf; last image is the final adversarial image
obtained by adding the adversarial perturbation to the original image. RESNET50 classifies the final adversarial image as shower curtain
with high probability.

of Bayes-Attack on ImageNet classifiers with that of other
hard-label black-box attacks for small query budgets, and
report success rates and average queries. We also perform
ablation studies on the ImageNet validation set by exploring
different low dimension structured subspaces and examining
different upsampling techniques.

We define success rate as the ratio of the number of images
successfully perturbed for a given query budget to the total
number of input images. In all experiments, images that
are already misclassified by the target network are excluded
from the set; only images that are initially classified with
the correct label are attacked. For each method of attack
and each target network, we compute the success rate and
average number of queries used to attack among images that
were successfully perturbed.

5.1. Empirical Protocols

We treat the size of low dimensional subspace used for run-
ning the Bayesian optimization loop as a hyperparameter.
For both `2 and `∞ attacks on ImageNet, we tune the the
low dimensional subspace size brdc × brdc over the range

rd ∈ [5, 18]. For `2 attacks, we treat the option of repre-
senting the subspace with sine and cosine FFT basis vectors
separately or together as a hyper-parameter. We initialize
the GP with n0 = 5 samples drawn from a standard normal
distribution in case of `∞ attacks, and from the uniform
distribution [−1, 1] for `2 attacks. For all the experiments
in this section, we use expected improvement as the acquisi-
tion function. We also examined other acquisition functions
(posterior mean, probability of improvement, upper confi-
dence bound) and observed that our method works equally
well with other acquisition functions. We independently
tune the hyperparameters on a small validation set and ex-
clude it from our final set of images to be attacked. We used
BoTorch2 packages for implementation.

5.2. Untargeted `2 attack

We compare the performance of the proposed method Bayes-
Attack against OPT attack(Cheng et al., 2018) and Sign-
OPT(Cheng et al., 2020), which is the current state of the
art among hard-label black-box attacks within the `2 threat

2https://botorch.org/

https://botorch.org/
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Figure 2. Performance comparison for `2 untargeted attacks with ε = 20.0 on ImageNet classifiers. Bayes-Attack significantly outperforms
all the other baselines.

Table 1. Results for `2 untargeted attacks on ImageNet classifiers with a query budget of 1000

ε = 5.0 ε = 10.0 ε = 20.0
Classifier Method Success Avg Queries Success Avg Queries Success Avg Queries

ResNet50
OPT attack 2.16% 334.00 4.71% 294.62 9.03% 240.94

Sign-OPT attack 4.07% 456.47 6.62% 424.62 12.98% 458.99
Bayes attack 20.10% 64.23 37.15% 64.13 66.67% 54.97

Inception-v3
OPT attack 1.00% 277.75 1.88% 221.47 4.51% 247.67

Sign-OPT attack 2.25% 648.50 3.75% 611.77 6.13% 557.71
Bayes attack 11.39% 109.65 22.65% 65.66 39.92% 68.86

VGG16-bn
OPT attack 2.51% 204.47 4.10% 176.32 9.38% 229.77

Sign-OPT attack 7.27% 552.33 11.36% 476.57 18.23% 417.46
Bayes attack 24.04% 69.84 43.46% 76.54 71.99% 48.95

model. On ImageNet, we attack the pretrained3 ResNet50
(He et al., 2015), Inception-v3 (Szegedy et al., 2015) and
VGG16-bn (Simonyan & Zisserman, 2014).

We compare the performance across three different `2 per-
turbation bounds, where we set ε to 5.0, 10.0 and 20.0
respectively. We evaluate the performance of all the meth-
ods with a budget of up to 1000 queries. For both OPT
attack and Sign-OPT attack, we use the implementations
made available by the authors45 and use hyperparameters as
suggested in their respective papers.

Figure 2 considers the the specific case of ε = 20.0 in the
above experiment, and exhibits the relationship between
success rates and number of queries used for each method.
We can see that Bayes-Attack consistently outperforms the
other baseline methods for across all query budgets up to
1000. Table 1 compares success rate and average query

3Pretrained models available at https://pytorch.org/
docs/stable/torchvision/models

4https://drive.google.com/file/d/
1ObXfAjAHm9FJfLy41TJfTlgQ4fSiP8Eq/edit

5https://github.com/LeMinhThong/
blackbox-attack

count of all methods, models, and ε thresholds for a query
budget of 1000. Bayes-Attack not only manages to get
attack success rates up to 6× better than the closest baseline,
but simultaneously reduces the average query count by up
to a factor of ten.

5.3. Untargeted `∞ attack

We also compare the performance of the proposed method
Bayes-Attack against Sign-OPT (Cheng et al., 2020), which
is the current state of the art among hard-label black-box
attacks within the `∞ threat model. We use the same query
budgets, models, and reported metrics as in the previous sub-
section. Here, we set the `∞ perturbation bound ε to 0.05.
Table 2 compares the performance of `∞ norm constrained
attacks in terms of success rate and average query count.
The proposed method Bayes-Attack consistently achieves
significant performance improvements over Sign-OPT.

5.4. Ablation Study

In this section, we perform ablation studies on ImageNet by
exploring different low dimensional structured subspaces

https://pytorch.org/docs/stable/torchvision/models
https://pytorch.org/docs/stable/torchvision/models
https://drive.google.com/file/d/1ObXfAjAHm9FJfLy41TJfTlgQ4fSiP8Eq/edit
https://drive.google.com/file/d/1ObXfAjAHm9FJfLy41TJfTlgQ4fSiP8Eq/edit
https://github.com/LeMinhThong/blackbox-attack
https://github.com/LeMinhThong/blackbox-attack
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Table 2. Results for `∞ untargeted attacks on ImageNet classifiers
with a query budget of 1000

Classifier Method Success Avg
Rate Queries

ResNet50 Sign-OPT attack 3.05% 332.38
Bayes attack 67.48% 45.94

Inception-v3 Sign-OPT attack 1.75% 549.00
Bayes attack 44.29% 72.31

VGG16-bn Sign-OPT attack 5.81% 469.84
Bayes attack 78.47% 33.70

and comparing mapping techniques for both `2 and `∞
threat models.

5.4.1. LOW DIMENSION SUBSPACES

In case of the `2 threat model, we utilize the low dimensional
subspace generated by the low frequency sine and cosine
FFT basis vectors. We can also separately consider the
cosine FFT basis or sine FFT basis separately by using
only the real components or imaginary components of the
frequency domain representation.

We compare the attacks generated in the low dimension
subspace created using cosine and sine FFT basis vectors
separately and together. For this experiment, we perform
hard label black-box attacks on ResNet50 trained on Ima-
geNet with `2 perturbation set to 20.0. We maintain a query
budget of 1000 across the experiments. For fair comparison,
we keep the size of low dimension subspace almost same
across the experiments, i.e. 3× 18× 18 for cosine and sine
FFT basis separately and 3× 12× 12× 2 when considering
the complete FFT basis. We also compare with a random set
of vectors sampled from standard normal distribution. We
keep the size of vectors sampled from normal distribution
same as 3× 18× 18.

Table 3. Performance comparison of FFT basis vectors and random
vectors sampled from the standard normal distribution for `2 attack
with ε = 20.0 on ResNet50.

Basis Success Avg Queries

Cosine FFT 64.38% 54.25
Sine FFT 63.74% 45.72

Cosine and sine FFT 66.67% 54.97
Standard Normal 33.33% 48.25

Table 3 compares the performance of basis vectors in terms
of attack success rate and average query count. We observe
that the low frequency FFT basis vectors enhanced the attack
accuracy significantly as compared to random set of vectors
generated from standard normal distribution. On the other

hand among low frequency components, sine and cosine
FFT basis vectors together provide a slight gain in attack
success rate as compared to using them separately.

5.4.2. MAPPING TECHNIQUES

The proposed method requires a low dimensional subspace
for efficiently searching the perturbation and a mapping
technique for transforming the perturbation learnt in the
low dimension to the full input space. We use FFT basis
vectors for learning perturbation for `2 threat model while
nearest neighbor interpolation for `∞ threat model. Here,
we compare both the methods on `2 as well as `∞ threat
models.

We compare both the mapping techniques on attacking
ResNet50 trained on ImageNet with `∞ and `2 perturba-
tion set to 0.05 and 20.0, respectively. We maintain a query
budget of 1000 across the experiments. For fair comparison,
we keep the size of low dimension subspace same across
the experiments, i.e. 3× 18× 18.

Table 4 shows the performance of both the mapping tech-
niques on `∞ and `2 threat models. FFT basis vectors
perform better than nearest neighbor interpolation in the `2
threat model, while nearest neighbor performs better for `∞
threat model.

Table 4. Comparing inverse fast Fourier transform (IFFT) and near-
est neighbor interpolation (NNI) for `2 and `∞ attack on ResNet50.

Attack Mapping Success Avg
Type Technique Rate Queries

`∞, ε = 0.05
IFFT 59.16% 55.72
NNI 67.48% 45.94

`2, ε = 20.0
IFFT 66.67% 54.97
NNI 59.54% 50.71

6. Conclusions
We consider the problem of hard label black-box adver-
sarial attacks in low query budget regimes. To efficiently
generate adversarial attacks with higher success rates and
fewer queries, we define two low dimension structured sub-
space favorable for `2 and `∞ norm constrained hard-label
black box attacks. Our proposed method uses Bayesian
optimization for finding adversarial perturbations in the low
dimension subspace and maps it back to original input space
to obtain final perturbation. We successfully demonstrate
the efficacy of our method in attacking multiple deep learn-
ing architectures for high dimensional inputs in both `∞
and `2 threat models. Our work opens avenues regarding
applying BO for adversarial attacks in high dimensional
settings.
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7. Appendix
7.1. Untargeted `2 attack

Figure 3 and 4 compare the performance across different `2 perturbation bounds ε = 5.0 and ε = 10.0, and exhibits the
relationship between success rates and number of queries used for each method. We can see that Bayes-Attack consistently
outperforms the other baseline methods for across all query budgets up to 1000.
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Figure 3. Performance comparison for `2 untargeted attacks with ε = 10.0 on ImageNet classifiers. Bayes-Attack significantly outperforms
all the other baselines.
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Figure 4. Performance comparison for `2 untargeted attacks with ε = 5.0 on ImageNet classifiers. Bayes-Attack significantly outperforms
all the other baselines.

7.2. Untargeted `∞ attack

Figure 5 compares the performance of the proposed method Bayes-Attack against Sign-OPT within the `∞ threat model
with ε = 0.05. The proposed method Bayes-Attack consistently achieve better performance for across all query budgets up
to 1000.

7.3. Low Dimesion Subspaces

Figure 6 compares the attacks generated in the low dimension subspace created using cosine and sine FFT basis vectors
separately and together. We also compare with a random set of vectors sampled from standard normal distribution.
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Figure 5. Performance comparison for `∞ untargeted attacks with ε = 0.05 on ImageNet classifiers. Bayes-Attack significantly
outperforms the other baseline.
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Figure 6. Comparison of FFT basis vectors and random vectors sampled from the standard normal distribution for `2 attack with ε = 20.0
on ResNet50.


