
Convergence rates for distributed stochastic optimization over random
networks

Dusan Jakovetic, Dragana Bajovic, Anit Kumar Sahu and Soummya Kar

Abstract— We establish the O(1
k
) convergence rate for dis-

tributed stochastic gradient methods that operate over strongly
convex costs and random networks. The considered class of
methods is standard each node performs a weighted average
of its own and its neighbors solution estimates (consensus),
and takes a negative step with respect to a noisy version
of its local functions gradient (innovation). The underlying
communication network is modeled through a sequence of
temporally independent identically distributed (i.i.d.) Laplacian
matrices connected on average, while the local gradient noises
are also i.i.d. in time, have finite second moment, and possibly
unbounded support. We show that, after a careful setting of the
consensus and innovations potentials (weights), the distributed
stochastic gradient method achieves a (order-optimal) O(1

k
)

convergence rate in the mean square distance from the solution.
This is the first order-optimal convergence rate result on
distributed strongly convex stochastic optimization when the
network is random and/or the gradient noises have unbounded
support. Simulation examples confirm the theoretical findings.

1. INTRODUCTION

Distributed optimization and learning algorithms attract
a great interest in recent years, thanks to their widespread
applications including distributed estimation in networked
systems, e.g., [1], distributed control, e.g., [2], and big data
analytics, e.g., [3].

In this paper, we study distributed stochastic optimization
algorithms that operate over random networks and mini-
mize smooth strongly convex costs. We consider standard
distributed stochastic gradient methods where at each time
step, each node makes a weighted average of its own and
its neighbors’ solution estimates, and performs a step in the
negative direction of its noisy local gradient. The underlying
network is allowed to be randomly varying, similarly to,
e.g., the models in [4]–[6]. More specifically, the network
is modeled through a sequence of independent identically
distributed (i.i.d.) graph Laplacian matrices, where the net-
work is assumed to be connected on average. (This trans-
lates into the requirement that the algebraic connectivity
of the mean Laplacian matrix is strictly positive.) Random

The work of DJ and DB was supported in part by the EU Horizon
2020 project I-BiDaaS, project number 780787. The work of D. Jakovetic
was also supported in part by the Serbian Ministry of Education, Science,
and Technological Development, grant 174030. The work of AKS and SK
was supported in part by National Science Foundation under grant CCF-
1513936.

D. Bajovic is with the Faculty of Technical Sciences, University of Novi
Sad 21000 Novi Sad, Serbia dbajovic@uns.ac.rs

D. Jakovetic is with the Department of Mathematics and Informatics,
Faculty of Sciences, University of Novi Sad 21000 Novi Sad, Serbia
djakovet@uns.ac.rs

A. K. Sahu and S. Kar are with the Department of Electrical and
Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
{anits,soummyak}@andrew.cmu.edu

network models are highly relevant in, e.g., internet of
things (IoT) and cyber physical systems (CPS) applications,
like, e.g., predictive maintenance and monitoring in indus-
trial manufacturing systems, monitoring smart buildings,
etc. Therein, networked nodes often communicate through
unreliable/intermittent wireless links, due to, e.g., low-power
transmissions or harsh environments.

The main contributions of the paper are as follows.
We show that, by carefully designing the consensus and
the gradient weights (potentials), the considered distributed
stochastic gradient algorithm achieves the order-optimal
O(1/k) rate of decay of the mean squared distance from
the solution (mean squared error – MSE). This is achieved
for twice continuously differentiable strongly convex local
costs, assuming also that the noisy gradients are unbiased
estimates of the true gradients and that the noise in gradients
has bounded second moment. To the best of our knowledge,
this is the first time an order-optimal convergence rate for
distributed strongly convex stochastic optimization has been
established for random networks.

We now briefly review the literature to help us contrast
this paper from prior work. In the context of the extensive
literature on distributed optimization, the most relevant to
our work are the references on: 1) distributed strongly
convex stochastic (sub)gradient methods; and 2) distributed
(sub)gradient methods over random networks (both determin-
istic and stochastic methods). For the former thread of works,
several papers give explicit convergence rates under differ-
ent assumptions. Regarding the underlying network, refer-
ences [7], [8] consider static networks, while the works [9]–
[11] consider deterministic time-varying networks.

References [7], [8] consider distributed strongly convex
optimization for static networks, assuming that the data
distributions that underlie each node’s local cost function are
equal (reference [7] considers empirical risks while reference
[8] considers risk functions in the form of expectation);
this essentially corresponds to each nodes’ local function
having the same minimizer. References [9]–[11] consider
deterministically varying networks, assuming that the “union
graph” over finite windows of iterations is connected. The
papers [7]–[10] assume undirected networks, while [11]
allows for directed networks but assumes a bounded support
for the gradient noise. The works [7], [9]–[11] allow the local
costs to be non-smooth, while [8] assumes smooth costs, as
we do here. With respect to these works, we consider random
networks, undirected networks, smooth costs, and allow the
noise to have unbounded support.

Distributed optimization over random networks has been

studied in [4]–[6]. References [4], [5] consider non-
differentiable convex costs and no (sub)gradient noise, while
reference [6] considers differentiable costs with Lipschitz
continuous and bounded gradients, and it also does not
allow for gradient noise, i.e., it considers methods with exact
(deterministic) gradients. In [12], we consider a distributed
Kiefer-Wolfowitz-type stochastic approximation method and
establish the method’s O(1/k1/2) convergence rate. Refer-
ence [12] complements the current paper by assuming that
nodes only have access to noisy functions’ estimates (zeroth
order optimization), and no gradient estimates are available.
In contrast, by assuming a noisy first-order (gradient) infor-
mation is available, we show here that strictly faster rates
than in [12] can be achieved.

In summary, to the best of our knowledge, this is the
first time to establish an order-optimal convergence rate
for distributed stochastic gradient methods under strongly
convex costs and random networks.

Paper organization. The next paragraph introduces no-
tation. Section 2 describes the model and the stochastic
gradient method we consider. Section 3 states and proves
the main result on the algorithm’s MSE convergence rate.
Section 4 provides a simulation example. Finally, we con-
clude in Section 5.

Notation. We denote by R the set of real numbers and
by Rm the m-dimensional Euclidean real coordinate space.
We use normal lower-case letters for scalars, lower case
boldface letters for vectors, and upper case boldface letters
for matrices. Further, we denote by: Aij the entry in the i-
th row and j-th column of a matrix A; A> the transpose
of a matrix A; ⊗ the Kronecker product of matrices; I, 0,
and 1, respectively, the identity matrix, the zero matrix, and
the column vector with unit entries; J the N × N matrix
J := (1/N)11>. When necessary, we indicate the matrix
or vector dimension through a subscript. Next, A � 0 (A �
0) means that the symmetric matrix A is positive definite
(respectively, positive semi-definite). We further denote by:
‖·‖ = ‖·‖2 the Euclidean (respectively, spectral) norm of its
vector (respectively, matrix) argument; λi(·) the i-th smallest
eigenvalue; ∇h(w) and ∇2h(w) the gradient and Hessian,
respectively, evaluated at w of a function h : Rm → R,
m ≥ 1; P(A) and E[u] the probability of an event A and
expectation of a random variable u, respectively. Finally, for
two positive sequences ηn and χn, we have: ηn = O(χn) if
lim supn→∞

ηn
χn

<∞.

2. MODEL AND ALGORITHM

A. Optimization and network models

We consider the scenario where N networked nodes aim to
collaboratively solve the following unconstrained problem:

minimize

N∑
i=1

fi(x), (1)

where fi : Rm 7→ R is a convex function available to node
i, i = 1, ..., N . We make the following standard assumption
on the fi’s.

Assumption 1. For all i = 1, ..., N , function fi : Rm 7→ R
is twice continuously differentiable, and there exist constants
0 < µ ≤ L <∞, such that, for all x ∈ Rm, there holds:

µ I � ∇2fi(x) � L I.

Assumption 1 implies that each fi is strongly convex with
modulus µ, and it also has Lipschitz continuous gradient with
Lipschitz constant L, i.e., the following two inequalities hold
for any x,y ∈ Rm:

fi(y) ≥ fi(x) +∇fi(x)> (y − x) +
µ

2
‖x− y‖2

‖∇fi(x)−∇fi(y)‖ ≤ L ‖x− y‖.

Furthermore, under Assumption 1, problem (1) is solvable
and has the unique solution, which we denote by x? ∈ Rm.
For future reference, introduce also the sum function f :
Rm → R, f(x) =

∑N
i=1 fi(x).

We consider distributed stochastic gradient methods to
solve (1) over random networks. Specifically, we adopt the
following model. At each time instant k = 0, 1, ..., the
underlying network G(k) = (V,E(k)) is undirected and
random, with V = {1, ..., N} the set of nodes, and E(k)
the random set of undirected edges. We denote by {i, j}
the edge that connects nodes i and j. Further, denote by 7
Ωi(k) = {j ∈ V : {i, j} ∈ E(k)} the random neighborhood
od node i at time k (excluding node i). We associate to G(k)
its N ×N (symmetric) Laplacian matrix L(k), defined by:
Lij(k) = −1, if {i, j} ∈ E(k), i 6= j; Lij(k) = 0, if
{i, j} /∈ E(k), i 6= j; and Lii(k) = −

∑
j 6=iLij(k). Denote

by L = E[L(k)] (as explained ahead, the expectation is
independent of k), and let G = (V,E) be the graph induced
by matrix L, i.e., E = {{i, j} : i 6= j, Lij > 0}. We make
the following assumption.

Assumption 2. The matrices {L(k)} are independent, iden-
tically distributed (i.i.d.) Furthermore, graph G is connected.

It is well-known that the connectedness of G is equivalent
to the condition λ2

(
L
)
> 0.

B. Gradient noise model and the algorithm

We consider the following distributed stochastic gradient
method to solve (1). Each node i, i = 1, ..., N , maintains
over time steps (iterations) k = 0, 1, ..., its solution estimate
xi(k) ∈ Rm. Specifically, for arbitrary deterministic initial
points xi(0) ∈ Rm, i = 1, ..., N , the update rule at node i
and k = 0, 1, ..., is as follows:

xi(k + 1) = xi(k)− βk
∑

j∈Ωi(k)

(xi(k)− xj(k)) (2)

− αk (∇fi(xi(k)) + vi(k)) .

The update (2) is performed in parallel by all nodes i =
1, ..., N . The algorithm iteration is realized as follows. First,
each node i broadcasts xi(k) to all its available neighbors
j ∈ Ωi(k), and receives xj(k) from all j ∈ Ωi(k).
Subsequently, each node i, i = 1, ..., N makes update (2),
which completes an iteration. In (2), αk is the step-size that
we set to αk = α0/(k + 1), k = 0, 1, ..., with α0 > 0;

and βk is the (possibly) time-varying weight that each node
assigns to all its neighbors. We set βk = β0/(k + 1)ν ,
k = 0, 1, ..., with ν ∈ [0, 1/2]. Here, β0 > 0 is a constant
that should be taken to be sufficiently small; e.g., one can set
β0 = 1/(1 + θ), where θ is the maximal degree (number of
neighbors of a node) across network. Finally, vi(k) is noise
in the calculation of the fi’s gradient at iteration k.

For future reference, we also present algorithm (2) in
matrix format. Denote by x(k) =

[
x>1 (k), · · · ,x>N (k)

]> ∈
RNm the vector that stacks the solution estimates of all
nodes. Also, define function F : RNm 7→ R, by F (x) =∑N
i=1 fi(xi), with x =

[
x>1 , · · · ,x>N

]> ∈ RNm. Finally,
let Wk = (I− Lk) ⊗ Im, where Lk = βkL(k). Then,
for k = 0, 1, ..., algorithm (2) can be compactly written as
follows:

x(k + 1) = Wkx(k)− αk (∇F (x(k)) + v(k)) . (3)

We make the following standard assumption on the gradi-
ent noises. First, denote by Fk the history of algorithm (2) up
to time k; that is, Fk, k = 1, 2, ..., is an increasing sequence
of sigma algebras, where Fk is the sigma algebra generated
by the collection of random variables {L(s), vi(t)}, i =
1, ..., N , s = 0, ..., k − 1, t = 0, ..., k − 1.

Assumption 3. For each i = 1, ..., N , the sequence of noises
{vi(k)} satisfies for all k = 0, 1, ...:

E[vi(k) | Fk] = 0, almost surely (a.s.) (4)
E[‖vi(k)‖2 | Fk] ≤ cv‖xi(k)‖2 + c′v, a.s., (5)

where cv and c′v are nonnegative constants.

Assumption 3 is satisfied, for example, when {vi(k)} is an
i.i.d. zero-mean, finite second moment, noise sequence such
that vi(k) is also independent of history Fk. However, the
assumption allows that the gradient noise vi(k) be dependent
on node i and also on the current point xi(k); the next
subsection gives some important machine learning settings
encompassed by Assumption 3.

C. A machine learning motivation

The optimization-algorithmic model defined by Assump-
tions 1 and 3 subsumes, e.g., important machine learning
applications. Consider the scenario where fi corresponds to
the risk function associated with the node i’s local data, i.e.,

fi(x) = Edi∼Pi [`i (x;di)] + Ψi(x). (6)

Here, Pi is node i’s local distribution according to which its
data samples di ∈ Rq are generated; `i(·; ·) is a loss function
that is convex in its first argument for any fixed value of its
second argument; and Ψ : Rm → R is a strongly convex
regularizer. Similarly, fi can be an empirical risk function:

fi(x) =
1

ni

 ni∑
j=1

`i (x;di,j)

+ Ψi(x), (7)

where di,j , j = 1, ..., ni, is the set of training examples at
node i. Examples for the loss `i(·; ·) include the following:

`i(x;ai, bi) =
1

2

(
a>i x− bi

)2
(quadratic loss) (8)

`i(x;ai, bi) = ln
(

1 + exp(−bi(a>i x))
)

(logistic loss)

For the quadratic loss above, a data sample di = (ai, bi),
where ai is a regressor vector and bi is a response variable;
for the logistic loss, ai is a feature vector and bi ∈ {−1,+1}
is its class label. Clearly, both the risk (6) and the empirical
risk (7) satisfy Assumption 1 for the losses in (8).

We next discuss the search directions in (2) and Assump-
tion 3 for the gradient noise. A common search direction in
machine learning algorithms is the gradient of the loss with
respect to a single data point1:

gi(x) = ∇`i (x;di) +∇Ψi(x).

In case of the risk function (8), di is drawn from distri-
bution Pi; in case of the empirical risk (7), di can be,
e.g., drawn uniformly at random from the set of data points
di,j , j = 1, ..., ni, with repetition along iterations. In both
cases, gradient noise vi = gi(x) − ∇fi(x) clearly satisfies
assumption (4). To see this, consider, for example, the risk
function (6), and let us fix iteration k and node i’s estimate
xi(k) = xi. Then,

E [vi(k) | Fk] = E [gi(k)−∇fi(xi(k)) |xi(k) = xi]

= E[∇`i (xi(k);di) |xi(k) = xi] +∇Ψi(xi)

− (∇fi(xi) +∇Ψi(x))

= Edi∼Pi [∇`i (x;di)] +∇Ψi(xi)

− (Edi∼Pi [∇`i (x;di)] +∇Ψi(xi)) = 0.

Further, for the empirical risk, assumption (5) holds trivially.
For the risk function (6), assumption (5) holds for a suffi-
ciently “regular” distribution Pi. For instance, it is easy to
show that the assumption holds for the logistic loss in (8)
when Pi has finite second moment, while it holds for the
square loss in (8) when Pi has finite fourth moment.

Note that our setting allows that the data generated at dif-
ferent nodes be generated through different distributions Pi,
as well as that the nodes utilize different losses `i’s and regu-
larizers Ψi’s. Mathematically, this means that ∇fi(x?) 6= 0,
in general. In words, if a node i relies only on its local
data di, it cannot recover the true solution x?. Nodes then
engage in a collaborative algorithm (2) through which, as
shown ahead, they can recover the global solution x?.

3. PERFORMANCE ANALYSIS

A. Statement of main results and auxiliary lemmas

We are now ready to state our main result.

Theorem 3.1. Consider algorithm (2) with step-sizes αk =
α0

k+1 and βk = β0

(k+1)ν , where β0 > 0, α0 > 2N/µ, and
ν ∈ [0, 1/2]. Further, let Assumptions 1–3 hold. Then, for

1Similar considerations hold for a loss with respect to a mini-batch of
data points; this discussion is abstracted for simplicity.

each node i’s solution estimate xi(k) and the solution x? of
problem (1), there holds:

E
[
‖xi(k)− x?‖2

]
= O(1/k).

We remark that the condition α0 > 2N/µ can be relaxed
to require only a positive α0, in which case the rate becomes
O(ln(k)/k), instead of O(1/k).2 Also, to avoid large step-
sizes at initial iterations for a large α0, step-size αk can
be modified to αk = α0/(k + k0), for arbitrary positive
constant k0, and Theorem 3.1 continues to hold. Theorem 3.1
establishes the O(1/k) MSE rate of convergence of algo-
rithm (2); due to the assumed fi’s strong convexity, the
theorem also implies that E [f(xi(k))− f(x?)] = O(1/k).
Note that the expectation in Theorem 3.1 is both with
respect to randomness in gradient noises and with respect
to the randomness in the underlying network. The O(1/k)
rate does not depend on the statistics of the underlying
random network, as long as the network is connected on
average (i.e., satisfies Assumption 2.) The hidden constant
depends on the underlying network statistics, but simulation
examples suggest that the dependence is usually not strong
(see Section 4).

Proof strategy and auxiliary lemmas. Our strategy for
proving Theorem 3.1 is as follows. We first establish the
mean square boundedness (uniform in k) of the iterates
xi(k), which also implies the uniform mean square bounded-
ness of the gradients ∇fi(xi(k)) (Subsection 3-B). We then
bound, in the mean square sense, the disagreements of differ-
ent nodes’ estimates, i.e., quantities (xi(k)−xj(k)), showing
that E[‖xi(k)−xj(k)‖2] = O(1/k) (Subsection 3-C). This
allows us to show that the (hypothetical) global average of
the nodes’ solution estimates x(k) := 1

N

∑N
i=1 xi(k) evolves

according to a stochastic gradient method with the gradient
estimates that have a sufficiently small bias and finite second
moment. This allows us to show the O(1/k) rate on the
mean square error at the global average, which in turn allows
to derive a similar bound at the individual nodes’ estimates
(Subsection 3-D).

In completing the strategy above, we make use of the
following Lemma; the Lemma is a minor modification of
Lemmas 4 and 5 in [1].

Lemma 3.2. Let z(k) be a nonnegative (deterministic)
sequence satisfying:

z(k + 1) ≤ (1− r1(k)) z1(k) + r2(k),

where {r1(k)} and {r2(k)} are deterministic sequences with
a1

(k + 1)δ1
≤ r1(k) ≤ 1 and r2(k) ≤ a2

(k + 1)δ2
,

with a1, a2, δ1, δ2 > 0. Then, (a) if δ1 = δ2 = 1, there
holds: z(k) = O(1); (b) if δ1 = 1/2 and δ2 = 3/2, then
z(k) = O(1/k); and (c) if δ1 = 1, δ2 = 2, and a1 > 1,
then z(k) = O(1/k).

2This subtlety comes from equation (32) ahead and the requirement that
c20 > 1. If c20 ≤ 1, it can be shown that in (33) the right hand side
modifies to a O(ln(k)/k) quantity.

Subsequent analysis in Subsections 3-b until 3-d restricts
to the case when ν = 1/2, i.e., when consensus weights
equal βk = β0

(k+1)1/2
. That is, for simplicity of presentation,

we prove Theorem 3.1 for case ν = 1/2. As it can be verified
in subsequent analysis, the proof of Theorem 3.1 extends to
a generic µ ∈ [0, 1/2) as well. As another step in simplifying
notations, throughout Subsections 3-b and 3-c, we let m = 1
to avoid extensive usage of Kronecker products; again, the
proofs extend to a generic m > 1.

B. Mean square boundedness of the iterates

This Subsection shows the uniform mean square bound-
edness of the algorithm iterates and the gradients evaluated
at the algorithm iterates.

Lemma 3.3. Consider algorithm (2), and let Assumptions 1-
3 hold. Then, there exist nonnegative constants cx and c ∂f
such that, for all k = 0, 1, ..., there holds:

E[‖x(k)‖2] ≤ cx and E[‖∇F (x(k))‖2] ≤ c ∂f .

Proof.
Denote by xo = x∗1N and recall (3). Then, we have:

x(k + 1)− xo = Wk(x(k)− xo) (9)
− αk (∇F (x(k))−∇F (xo))

− αkv(k)− αk∇F (xo).

By mean value theorem, we have:

∇F (x(k))−∇F (xo) (10)

=

[∫ 1

s=0

∇2F (xo + s(x(k)− xo)) d s

]
(x(k)− xo)

= Hk (x(k)− xo) .

Note that LI < Hk < µI. Using (10) in (9) we have:

x(k + 1)− xo = (Wk − αkHk) (x(k)− xo)(11)
− αkv(k)− αk∇F (xo).

Denote by ζ(k) = x(k) − xo and by ξ(k) =
(Wk − αkHk) (x(k)−xo)−αk∇F (xo). Then, there holds:

E[‖ζ(k + 1)‖2 | Fk] ≤ ‖ξ(k)‖2

− 2αk ξ(k)>E[v(k) | Fk] + α2
k E[‖v(k)‖2 | Fk]

≤ ‖ξ(k)‖2 +N α2
k (cv ‖x(k)‖2 + c′v), a.s., (12)

where we used Assumption 3 and the fact that ξ(k) is
measurable with respect to Fk. We next bound ‖ξ(k)‖2. Note
that ‖Wk − αkHk‖ ≤ 1− µαk. Therefore, we have:

‖ξ(k)‖ ≤ (1− µαk) ‖ζ(k)‖+ αk ‖∇F (xo)‖. (13)

We now use the following inequality:

(a+ b)2 ≤ (1 + θ) a2 +

(
1 +

1

θ

)
b2, (14)

for any a, b ∈ R and θ > 0. We set θ = c0
k+1 , with c0 > 0.

Using the inequality (14) in (13), we have:

‖ξ(k)‖2 ≤
(

1 +
c0

k + 1

)
(1− αkµ)2

× ‖ζ(k)‖2 +

(
1 +

k + 1

c0

)
α2
k‖∇F (xo)‖2.

Next, for c0 < α0µ, the last inequality implies:

‖ξ(k)‖2 ≤
(

1− c1
k + 1

)
‖ζ(k)‖2 (15)

+
c2

k + 1
‖∇F (xo)‖2,

for some constants c1, c2 > 0. Combining (15) and (12), we
get:

E[‖ζ(k + 1)‖2 | Fk] ≤
(

1− c′1
k + 1

)
‖ζ(k)‖2

+
c′2

k + 1
, (16)

for some c′1, c
′
2 > 0. Taking expectation in (16) and applying

Lemma 3.2, it follows that E[‖ζ(k)‖2] = E[‖x(k)−xo‖2]
is uniformly (in k) bounded from above by a positive con-
stant. It is easy to see that the latter implies that E[‖x(k)‖2]
is also uniformly bounded. Using the Lipschitz continuity of
∇F , we finally also have that E[‖∇F (x(k))‖2] is also uni-
formly bounded. The proof of Lemma 3.3 is now complete.

C. Disagreement bounds

Recall the (hypothetically available) global average of
nodes’ estimates x(k) = 1

N

∑N
i=1 xi(k), and denote by

x̃i(k) = xi(k) − x(k) the quantity that measures how far
apart is node i’s solution estimate from the global average.
Introduce also vector x̃(k) = (x̃1(k), ..., x̃N (k))>, and note
that it can be represented as x̃(k) = (I− J)x(k), where we
recall J = 1

N 11>. We have the following Lemma.

Lemma 3.4. Consider algorithm (2) under Assumptions 1–3.
Then, there holds:

E[‖x̃(k)‖2] = O(1/k).

As detailed in the next Subsection, Lemma 3.4 is important
as it allows to sufficiently tightly bound the bias in the
gradient estimates according to which the global average
x(k) evolves.

Proof. It is easy to show that the process {x̃(k)} follows
the recursion:

x̃(k + 1) = W̃(k)x̃(k)− αk (I− J) (∇F (x(k)) + v(k))︸ ︷︷ ︸
w(k)

,

(17)

where W̃(k) = W(k) − J = I − L(k) − J. Note that,
E
[
‖w(k)‖2

]
≤ c7 < ∞, which follows due to the mean

square boundedness of x(k) and ∇F (x(k)). Then, we have:

‖x̃(k + 1)‖ ≤
∥∥∥W̃(k)

∥∥∥ ‖x̃(k)‖+ αk ‖w(k)‖ .

We now invoke Lemma 4.4 in [13] to note that, after an
appropriately chosen k1, we have for ∀k ≥ k1,

‖x̃(k + 1)‖ ≤ (1− r(k)) ‖x̃(k)‖+ αk ‖w(k)‖ , (18)

with r(k) being a Fk-adapted process that satisfies r(k) ∈
[0, 1], a.s., and:

E [r(k)|Fk] ≥ c8βk =
c9

(k + 1)
1
2

a.s., (19)

for some constants c8, c9 > 0. Using (14) in (18), we have:

‖x̃(k + 1)‖2 ≤ (1 + θk) (1− r(k))2 ‖x̃(k)‖2

+

(
1 +

1

θk

)
α2
k ‖w(k)‖2 ,

for θk = c10

(k+1)
1
2

. Then, we have:

E
[
‖x̃(k + 1)‖2 |Fk

]
≤ (1 + θk)

(
1− c9

(k + 1)
1
2

)2

‖x̃(k)‖2

+

(
1 +

1

θk

)
α2
k E[‖w(k)‖2 | Fk], a.s.

Next, for c10 < c9 (c10 can be chosen freely), we have:

E
[
‖x̃(k + 1)‖2

]
≤
(

1− c11

(k + 1)
1
2

)
E
[
‖x̃(k)‖2

]
(20)

+
c12

(k + 1)
3
2

Utilizing Lemma 3.2, inequality (20) finally yields
E
[
‖x̃(k + 1)‖2

]
= O

(
1
k

)
. The proof of the Lemma is

complete.

D. Proof of Theorem 3.1

We are now ready to prove Theorem 3.1.
Proof.
Consider global average x(k) = 1

N

∑
n=1 xi(k). From

(17), we have:

x(k + 1) = x(k)− αk

 1

N

N∑
i=1

∇fi (xi(k)) +
1

N

N∑
i=1

vi(k)︸ ︷︷ ︸
v(k)

which implies:

x(k + 1) = x(k)− αk
N

[
N∑
i=1

∇fi (xi(k))

−∇fi (x(k)) +∇fi (x(k))]− αkv(k).

Recall f(·) =
∑N
i=1 fi(·). Then, we have:

x(k + 1) = x(k)− αk
N
∇f (x(k)) (21)

− αk
N

[
N∑
i=1

∇fi (xi(k))−∇fi (x(k))

]
− αkv(k),

which implies:

x(k + 1) = x(k) (22)

− αk
N

[∇f (x(k)) + e(k)] ,

where

e(k) = Nv(k) +

N∑
i=1

(∇fi (xi(k))−∇fi (x(k)))︸ ︷︷ ︸
ε(k)

. (23)

Note that, ‖∇fi (xi(k))−∇fi (x(k))‖ ≤
L ‖xi(k)− x(k)‖ = L ‖x̃i(k)‖. Thus, we can conclude for

ε(k) =

N∑
i=1

(∇fi (xi(k))−∇fi (x(k)))

the following:

E
[
‖ε(k)‖2

]
≤ c15

(k + 1)
. (24)

Note here that (22) is an inexact gradient method for mini-
mizing f with step size αk/N and the random gradient error
e(k) = Nv(k)+ε(k). The term Nv(k) is zero-mean, while
the gradient estimate bias is induced by ε(k); as per (24),
the bias is at most O(1/k) in the mean square sense.

With the above development in place, we rewrite (21) as
follows:

x(k + 1) = x(k)− αk
N
∇f (x(k))− αk

N
ε(k)− αkv(k).

(25)

This implies, recalling that x? is the solution to (1):

x(k + 1)− x? = x(k)− x? (26)

− αk
N

∇f (x(k))−∇f (x?)︸ ︷︷ ︸
= 0

− αk
N
ε(k)− αkv(k).

(27)

By the mean value theorem, we have:

∇f (x(k))−∇f (x?) =

[∫ 1

s=0

∇2f (x? + s (x(k)− x?))

]
d s︸ ︷︷ ︸

Hk

× (x(k)− x?) , (28)

where it is to be noted that NL < Hk < Nµ. Using (28) in
(25), we have:

(x(k + 1)− x?) =
[
I− αk

N
Hk

]
(x(k)− x?) (29)

− αk
N
ε(k)− αkv(k).

Denote by m(k) =
[
I− αk

N Hk

]
(x(k)− x?) − αk

N ε(k).
Then, (29) is rewritten as:

(x(k + 1)− x?) = m(k)− αkv(k), (30)

and so:

‖x(k + 1)− x?‖2 ≤ ‖m(k)‖2 − 2αkm(k)>v(k)

+ α2
k ‖v(k)‖2 .

The latter inequality implies:

E[‖x(k + 1)− x?‖2 | Fk] ≤ ‖m(k)‖2

− 2αkm(k)>E[v(k) | Fk] + α2
kE[‖v(k)‖2 | Fk], a.s.

Taking expectation, using the fact that E[v(k) | Fk] = 0,
Assumption 3, and Lemma 3.3, we obtain:

E
[
‖x(k + 1)− x?‖2

]
≤ E

[
‖m(k)‖2

]
+

c17

(k + 1)2
, (31)

for some constant c17 > 0. Next, using (14), we have for
m(k) the following:

‖m(k)‖2 ≤ (1 + θk)
∥∥∥I− αk

N
Hk

∥∥∥2

‖x(k)− x?‖2

+

(
1 +

1

θk

)
α2
k

N2
‖ε(k)‖2

≤ (1 + θk) (1− c18αk)2 ‖x(k)− x?‖2

+

(
1 +

1

θk

)
α2
k

N2
‖ε(k)‖2 ,

with c18 = µ/N , because µ I � Hk � L I. After choosing
θk = c19

(k+1) such that c19 < α0 c18/2 = α0 µ/(2N) and after
taking expectation, we obtain:

E[‖m(k)‖2] ≤
(

1− c20

k + 1

)
E[‖x(k)− x?‖2] +

c21

(k + 1)2
,

(32)

where c20 > α0 µ/(2N) > 1 (because α0 > 2N/µ) and c21

is a positive constant. Combining (32) and (31), we get:

E
[
‖x(k + 1)− x?‖2

]
≤
(

1− c20

k + 1

)
‖x(k)− x?‖2

+
c21

(k + 1)2
+

c17

(k + 1)2
.

Invoking Lemma 3.2, the latter inequality implies:

E
[
‖x(k + 1)− x?‖2

]
≤ c22

(k + 1)
, (33)

for some constant c22 > 0. Therefore, for the global average
x(k), we have obtained the mean square rate O

(
1
k

)
. Finally,

we note that,

‖xi(k)− x?‖ ≤ ‖x(k)− x?‖+

∥∥∥∥∥∥∥xi(k)− x(k)︸ ︷︷ ︸
x̃i(k)

∥∥∥∥∥∥∥ .
After using:

‖xi(k)− x?‖2 ≤ 2 ‖x̃i(k)‖2 + 2 ‖x(k)− x?‖2 ,

and taking expectation, it follows that E
[
‖xi(k)− x?‖2

]
=

O
(

1
k

)
, for all i = 1, ..., N . The proof is complete.

4. SIMULATION EXAMPLE

We provide a simulation example on `2-regularized lo-
gistic losses and random networks where links fail inde-
pendently over iterations and across different links, with
probability pfail. The simulation corroborates the derived
O(1/k) rate of algorithm (2) over random networks and
shows that deterioration due to increase of pfail is small.

We consider empirical risk minimization (7) with the
logistic loss in (8) and the regularization functions set to
Ψi(x) = κ

2 ‖x‖
2, i = 1, ..., N , where κ > 0 is the

regularization parameter that is set to κ = 0.5.
The number of data points per node is ni = 10. We

generate the “true” classification vector x′ = ((x′1)>, x′0)>

by drawing its entries independently from standard nor-
mal distribution. Then, the class labels are generated as
bij = sign

(
(x′1)>ai,j + x′0 + εij

)
, where εij’s are drawn

independently from normal distribution with zero mean and
standard deviation 2. The feature vectors ai,j , j = 1, ..., ni,
at node i are generated as follows: each entry of each vector
is a sum of a standard normal random variable and a uniform
random variable with support [0, 5 i]. Different entries within
a feature vector are drawn independently, and also different
vectors are drawn independently, both intra node and inter
nodes. Note that the feature vectors at different nodes are
drawn from different distributions.

The algorithm parameters are set as follows. We let βk =
1

θ (k+1)1/2
, αk = 1

k+1 , k = 0, 1, ... Here, θ is the maximal
degree across all nodes in the network and here equals θ =
6. Algorithm (2) is initialized with xi(0) = 0, for all i =
1, ..., N .

We consider a connected network G with N = 10 nodes
and 23 links, generated as a random geometric graph: nodes
are placed randomly (uniformly) on a unit square, and the
node pairs whose distance is less than a radius are connected
by an edge. We consider the random network model where
each (undirected) link in network G fails independently
across iterations and independently from other links with
probability pfail. We consider the cases pfail ∈ {0; 0.5; 0.9}.
Note that the case pfail = 0 corresponds to network G
with all its links always online, more precisely, with links
failing with zero probability. Algorithm (2) is then run
on each of the described network models, i.e., for each
pfail ∈ {0; 0.5; 0.9}. This allows us to assess how much the
algorithm performance degrades with the increase of pfail.
We also include a comparison with the following centralized
stochastic gradient method:

y(k + 1) = y(k)− 1

N(k + 1)

N∑
i=1

∇` (y(k); ai(k), bi(k)) ,

(34)
where (ai(k), bi(k)) is drawn uniformly from the set
(ai,j , bi,j), j = 1, ..., ni. Note that algorithm (34) makes
an unbiased estimate of

∑N
i=1∇fi(y(k)) by drawing a

sample uniformly at random from each node’s data set.
Algorithm (34) is an idealization of (2): it shows how (2)
would be implemented if there existed a fusion node that had

access to all nodes’ data. Hence, the comparison with (34)
allows us to examine how much the performance of (2)
degrades due to lack of global information, i.e., due to the
distributed nature of the considered problem. Note that step-
size in (34) is set to 1/N(k+1) for a meaningful comparison
with (2), as this is the step-size effectively utilized by the
hypothetical global average of the nodes’ iterates with (2).
As an error metric, we use the mean square error (MSE)
estimate averaged across nodes: 1

N

∑N
i=1 ‖xi(k)− x?‖2.

Figure 1 plots the estimated MSE, averaged across 100
algorithm runs, versus iteration number k for different values
of parameter pfail in log10-log10 scale. Note that here the
slope of the plot curve corresponds to the sublinear rate of the
method; e.g., the −1 slope corresponds to a 1/k rate. First,
note from the Figure that, for any value of pfail, algorithm (2)
achieves on this example (at least) the 1/k rate, thus corrob-
orating our theory. Next, note that the increase of the link
failure probability only increases the constant in the MSE
but does not affect the rate. (The curves that correspond to
different values of pfail are “vertically shifted.”) Interestingly,
the loss due to the increase of pfail is small; e.g., the curves
that correspond to pfail = 0.5 and pfail = 0 (no link failures)
practically match. Figure 1 also shows the performance of
the centralized method (34). We can see that, except for the
initial few iterations, the distributed method (2) is very close
in performance to the centralized method.

Fig. 1: Estimated MSE versus iteration number k for
algorithm (2) with link failure probability pfail = 0 (red,

solid line); 0.5 (blue, dashed line); and 0.9 (green, dash-dot
line). The Figure also shows the performance of the
centralized stochastic gradient method in (34) (black,

dotted line).

5. CONCLUSION

We considered a distributed stochastic gradient method for
smooth strongly convex optimization. Through the analysis
of the considered method, we established for the first time
the order optimal O(1/k) MSE convergence rate for the
assumed optimization setting when the underlying network

is randomly varying. Simulation example on `2-regularized
logistic losses corroborates the established O(1/k) rate and
suggests that the effect of the underlying network’s statistics
on the O(1/k) rate’s hidden constant is small.

REFERENCES

[1] S. Kar and J. M. F. Moura, “Convergence rate analysis of distributed
gossip (linear parameter) estimation: Fundamental limits and trade-
offs,” IEEE Journal of Selected Topics in Signal Processing, Signal
Processing in Gossiping Algorithms Design and Applications, vol. 5,
no. 4, pp. 674–690, Aug. 2011.

[2] F. Bullo, J. Cortes, and S. Martinez, Distributed control of robotic net-
works: A mathematical approach to motion coordination algorithms.
Princeton University Press, 209.

[3] A. Daneshmand, F. Facchinei, V. Kungurtsev, and G. Scutari, “Hy-
brid random/deterministic parallel algorithms for nonconvex big data
optimization,” submitted to IEEE Trans. on Signal Processing, 2014.

[4] I. Lobel and A. E. Ozdaglar, “Distributed subgradient methods for
convex optimization over random networks,” IEEE Trans. Automat.
Contr., vol. 56, no. 6, pp. 1291–1306, Jan. 2011.

[5] I. Lobel, A. Ozdaglar, and D. Feijer, “Distributed multi-agent op-
timization with state-dependent communication,” Mathematical Pro-
gramming, vol. 129, no. 2, pp. 255–284, 2011.

[6] D. Jakovetic, J. Xavier, and J. M. F. Moura, “Convergence rates
of distributed Nesterov-like gradient methods on random networks,”
IEEE Transactions on Signal Processing, vol. 62, no. 4, pp. 868–882,
February 2014.

[7] K. Tsianos and M. Rabbat, “Distributed strongly convex optimization,”
50th Annual Allerton Conference onCommunication, Control, and
Computing, Oct. 2012.

[8] Z. J. Towfic, J. Chen, and A. H. Sayed, “Excess-risk of dis-
tributed stochastic learners,” IEEE Transactions on Information The-
ory, vol. 62, no. 10, Oct. 2016.

[9] D. Yuan, Y. Hong, D. W. C. Ho, and G. Jiang, “Optimal distributed
stochastic mirror descent for strongly convex optimization,” Automat-
ica, vol. 90, pp. 196–203, April 2018.

[10] N. D. Vanli, M. O. Sayin, and S. S. Kozat, “Stochastic subgradient al-
gorithms for strongly convex optimization over distributed networks,”
IEEE Transactions on network science and engineering, vol. 4, no. 4,
pp. 248–260, Oct.-Dec. 2017.

[11] A. Nedic and A. Olshevsky, “Stochastic gradient-push for strongly
convex functions on time-varying directed graphs,” IEEE Transactions
on Automatic Control, vol. 61, no. 12, pp. 3936–3947, Dec. 2016.

[12] A. K. Sahu, D. Jakovetic, D. Bajovic, and S. Kar, “Distributed
zeroth order optimization over random networks: A Kiefer-Wolfowitz
stochastic approximation approach,” 2018, available at https://www.
dropbox.com/s/kfc2hgbfcx5yhr8/MainCDC2018KWSA.pdf.

[13] S. Kar, J. M. F. Moura, and H. V. Poor, “Distributed linear parame-
ter estimation: Asymptotically efficient adaptive strategies,” SIAM J.
Control and Optimization, vol. 51, no. 3, pp. 2200–2229, 2013.

https://www.dropbox.com/s/kfc2hgbfcx5yhr8/MainCDC2018KWSA.pdf
https://www.dropbox.com/s/kfc2hgbfcx5yhr8/MainCDC2018KWSA.pdf

	Introduction
	Model and algorithm
	Optimization and network models
	Gradient noise model and the algorithm
	A machine learning motivation

	Performance Analysis
	Statement of main results and auxiliary lemmas
	Mean square boundedness of the iterates
	Disagreement bounds
	Proof of Theorem 3.1

	Simulation example
	Conclusion
	References

