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Abstract—Zeroth order optimization algorithms are an at-
tractive alternative for stochastic optimization problems, when
gradient computations are expensive or when closed form for
loss functions are not available. Recently, there has been a surge
of activity in utilizing zeroth order optimization algorithms in
myriads of applications including black box adversarial attacks
on machine learning frameworks, reinforcement learning and
simulation based optimization, to name a few. In addition to
utilizing the simplicity of a typical zeroth order optimization
scheme, distributed implementations of zeroth order schemes
so as to exploit data parallelizability are getting significant
attention recently. This article presents an overview of re-
cent work in the area of distributed zeroth order stochastic
optimization, specifically focusing on constrained optimization
settings. Firstly, we describe convergence rates and the dimension
dependence for a distributed projection free algorithm catered
to solve constrained stochastic optimization problems. Secondly,
we describe and quantify convergence rates for a variance
reduced distributed zeroth order optimization method inspired
from martingale difference sequences. We discuss limitations of
zeroth order optimization frameworks in terms of dimension
dependence. Finally, we illustrate the use of distributed zeroth
order algorithms in the context of adversarial attacks on deep
learning models.

1. INTRODUCTION

The growth of machine learning and data-driven methods over
the past few years has been largely fueled by developments in
optimization methods which have seen tremendous advances
in terms of efficient and flexible access to data and utilization
of data, especially in resource constrained environments and
applications. In particular, large scale training of machine
learning models have benefited from the development of
scalable effective stochastic optimization methods, where cost
gradient information is inexact but unbiased in nature. How-
ever, growing model complexities and the seemingly black-box
nature of deployed machine learning models combined with
the need to port large scale models to commodity devices have
necessitated to look beyond first order methods.
Derivative free optimization or zeroth order optimization is
motivated by settings where the analytical form of the cost
function is not directly accessible or when the gradient evalu-
ation is computationally prohibitive. Zeroth order optimization
has found applications in practical scenarios ranging from
problems in medical science, material science and chem-
istry [10], [16], [16], [34], [35]. More recently, zeroth order
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optimization methods have found promising applications in
the domain of adversarial machine learning especially in the
context of black-box adversarial attacks [2], [4], [5], [21].
While machine learning models have been largely successful
in providing state-of-the-art performance in important tasks
across the domains of computer vision and natural language
processing, they have been found to be fragile in many
scenarios: for instance, it has been demonstrated in certain
classification problems associated machine learning models
may be readily attacked to misclassify [15]. Designing adver-
sarial attacks, for the purpose of validating and strengthening
models, has seen growing interest in the machine learning
community [2], [4], [5], [21]. Black-box optimization methods
and in particular black-box gradient estimation techniques
have been particularly effective in black-box attacks [6] on
neural networks, i.e., in settings where only the model output
is known and the architecture and its weights are otherwise
unknown. In the context of policy learning and optimization
black-box optimization have also been successfully employed
for scalable policy optimization for reinforcement learning [8],
for linear quadratic regulators [33], and optimization with
bandit feedback [3].
In addition to models getting increasingly complex, the data
on which aforementioned models are trained are huge and
typically require storage that exceeds the capacity of one
machine. Hence, more often than not the data needs to be
distributed across multiple machines. With the pervasiveness
of machine learning models extending to commodity devices
such as in the Internet of Things (IoT) context, the data is
inherently collected in a distributed manner across devices1.
The need for stochastic optimization methods which are able
to operate without expensive gradient computations and are
able to function with distributed data across devices calls for
the development and understanding of fundamental limits of
distributed zeroth order optimization algorithms which we aim
to review in this paper.
In this paper, we focus on constrained stochastic optimiza-
tion problems where the optimizer has access to (unbiased)
loss function evaluations, i.e., a zeroth order oracle [42]. In
a constrained optimization setting with access to a zeroth
order oracle, it is natural to develop and employ analogues
of projected gradient descent (PGD). However, with biased
gradient estimates (the bias resulting from inaccurate gradient
estimations from zeroth order information) and the need for
possibly expensive exact projection operations, a naive zeroth-

1We use the terms devices, workers, nodes, agents interchangeably in this
paper.
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order analogue of PGD could suffer from slow convergence
and poor dependence on the problem parameters (such as di-
mension). This paper focuses on Frank-Wolfe type algorithms
[22] and their distributed counterparts, intuitively, because of
the flexibility available to avoid projection while only requiring
approximate minimization of the linear minimization oracle
encountered. On the other hand, a zeroth order analogue
of Frank-Wolfe avoids a projection operation and the linear
minimization encountered in it can be solved up to a degree
of inexactness, thereby making it computationally favorable to
use. Moreover, in applications such as black-box adversarial
attacks which are typically posed as constrained optimiza-
tion problems, a “good enough” feasible point satisfying the
misclassification objective is usually sought for rather than
the optimal point (see Section 8 for a relevant illustration).
Hence, we focus on projection free and gradient free con-
strained stochastic optimization built around the Frank-Wolfe
framework.
In this paper, we discuss both basic and variance reduced
zeroth order stochastic Frank-Wolfe algorithms to solve broad
classes of smooth constrained optimization problems in both
decentralized and distributed setups. By decentralized setups
we mean, setups where the devices or workers are connected to
a master node to read, write and exchange information, which
is typical in datacenter type environments. By distributed
setups we mean, setups where the devices do not have a
central coordinator and engage in information exchange in
a peer-to-peer fashion, by means of local computation and
message exchanges with neighboring devices [24], [32], [40],
[50], which is typical in IoT type setups.

We end this section by providing a brief discussion of
the main variants of zeroth order methods to be reviewed in
the paper, in the decentralized and/or distributed setting. In
this article, we first present a setting of the vanilla stochastic
Frank-Wolfe [1], [47] in which a small batch-size (independent
of dimension or the number of iterations) is sampled at
each epoch while having access to a zeroth order oracle at
each device. In the vanilla decentralized stochastic zeroth
order Frank-Wolfe to circumvent the potential divergence issue
due to non-decaying gradient noise and bias, we present
a gradient averaging technique used in [36], [45], [47] to
get a surrogate gradient estimate which reduces the noise
and the associated bias. Intuitively, the gradient averaging
technique reduces the linear minimization step in the Frank-
Wolfe scheme to that of an inexact minimization if the exact
gradient was available (more details to follow later). For the
variance reduced decentralized stochastic zeroth order Frank-
Wolfe, we demonstrate techniques based on SPIDER [12].
We then present a distributed version of the deterministic
Frank-Wolfe algorithm. where a gradient tracking technique is
employed. We present rates for both convex and non-convex
loss functions, specifically quantifying the dependence of the
primal gap and the Frank-Wolfe duality gap on dimension
of the optimization problem and the network connectivity.
To complement the theoretical results, we also illustrate
the efficacy of the presented algorithms through empirical
evaluations, by considering the problem of finding universal
adversarial perturbations on standard computer vision models.

2. RELATED WORK

For constrained stochastic optimization problems, the go to
algorithm for most practitioners is the projected gradient
descent or PGD (see [42] for a detailed treatment) and
further stochastic versions of it so as to avoid the entire
gradient computation at one go. However, more often that
not, PGD involves a very expensive projection operation
which needs to be solved to a reasonable degree of accuracy
or else the algorithm gets tends to get stuck. Hence,
projection free methods have seen a major surge recently.
In the context of projection free methods, [13] proposed the
Frank-Wolfe algorithm for smooth convex functions with line
search which was then extended to accommodate inexact
linear minimization steps without sacrificing convergence
performance in [22]. The convergence rates for deterministic
Frank-Wolfe, i.e., the gradient information is exact, has
been subsequently improved with additional assumptions in
[14], [27]. Stochastic versions of Frank-Wolfe for convex
optimization with number of calls to stochastic first order
oracle (SFO) at each iteration dependent on the number of
iterations with additional smoothness assumptions have been
studied in [18], [19] so as to obtain faster rates, while [36]
studied the version with a mini-batch size of 1. As far as
dealing with non-convex losses is concerned, a deterministic
Frank-Wolfe algorithm was proposed in [26], while [44],
[48], [54] used variance reduction techniques on a stochastic
version of Frank-Wolfe and further improved the rates.
Algorithms for zeroth order convex and non-convex
optimization with access to zeroth order oracles have been
studied in [1], [7], [11], [12], [23], [29], [31], [46], [47], [49],
[52], where the oracles considered are either incremental
zeroth order oracles (IZO) which returns the exact loss
function value at the queried point or stochastic zeroth
order oracles (SZO) which return an unbiased estimate of
the loss function value at the queried point. In particular,
[11] established lower bounds for the performance of zeroth
order schemes and the best dimension dependence that can
be achieved. In addition to vanilla zeroth order methods,
various forms of variance reduction based approaches have
also been studied in [12], [23], [31]. However, most of the
aforementioned works consider unconstrained optimization
problems. In regards to constrained zeroth order optimization,
[1], [29], [47] studied the problem for both convex and
non-convex loss functions. In [29], a projection step was
considered so as to cater to the constrained problem, while in
[47] a gradient smoothing technique was utilized in addition
to a stochastic zeroth-order Frank-Wolfe framework so as
to avoid potentially expensive projection operations. The
authors in [1] use a proximal mapping to further accelerate
the convergence of Frank-Wolfe algorithm for convex loss
functions. Going from centralized to distributed processing,
zeroth order optimization for distributed setups has garnered
a lot of interest lately. Unconstrained distributed zeroth
order stochastic optimization with access to an incremental
zeroth order oracle has been studied in [17], [49], while
for a stochastic zeroth oracle was studied in [46]. However,
distributed zeroth order constrained optimization is relatively
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less explored, which is something we discuss in this paper.
In this paper, we consider the problem of constrained zeroth
order stochastic optimization in both decentralized and
distributed scenarios. We constrain the access to information
at each node to a SZO and we propose a vanilla version and
a variance reduced version so as to improve the iteration
dependence even further. For first order optimization schemes,
the primal gap can only be specified in terms of the number
of iterations. However, for zeroth order schemes it is crucial
to quantify the dependence on the dimension of the problem
at hand. In this paper, we specifically focus on illustrating
the dependence of the primal gap in terms of the number of
iterations and the dimension of the optimization problem at
hand.
Paper Organization. Section 4 discusses the preliminaries
concerning the Frank-Wolfe algorithm, black-box gradient
estimation and stochastic Frank-Wolfe. Algorithms for
decentralized stochastic zeroth order Frank-Wolfe algorithm
and its convergence results are presented in Section 5.
Section 6 presents variance-reduction based algorithms for
decentralized stochastic zeroth order Frank-Wolfe algorithm,
while in Section 7 algorithms for distributed zeroth order
Frank-Wolfe algorithm are discussed and presented. Finally,
experimental results are presented in Section 8 and Section 9
concludes the paper.

3. STOCHASTIC OPTIMIZATION PRIMER: FIRST AND
ZEROTH ORDER

In this section, we briefly review aspects of stochastic and
zeroth order optimization.

A. Optimization Problem

A generic constrained stochastic optimization problem is typ-
ically posed as follows:

min
x∈C

f (x) = min
x∈C

Ey∼P [F (x;y)] , (1)

where C ∈ Rd is the associated constraint. In the machine
learning context, the formulation (1) is typically encountered
in the context of expected risk minimization where F (x;y)
denotes the risk or loss function, depending on the model
x and the data y obtained from a distribution P (unknown
apriori). The stochasticity in the optimization stems from the
fact that the functional F (·;y) can be queried to obtain
gradients or the value of the function itself depending upon
the access allowed by the oracle, but the function f(x) can
not be queried directly. Thus, be it gradients obtained from a
stochastic first order oracle (SFO) or function values obtained
from a stochastic zeroth order oracle (SZO), the information
obtained is only an unbiased estimate of the gradient ∇f(x)
or the function value f(x). The problem in (1) when applied
to a decentralized/distributed setting, i.e., a scenario in which
the data is distributed across M worker nodes, the problem
is then posed as finite-sum problem where P is taken to be a

uniform distribution over over [M ] = {1, 2, . . . ,M} and the
goal is to solve a special case of (1):

min
x∈C

f (x) = min
x∈C

1

M

M∑
i=1

fi (x) (2)

where each function fi is available to the i-th node and each
node maintains a local copy of the optimizer x. Furthermore, it
can also be assumed that each function fi(·) is composed of n
component functions, i.e., the finite sum optimization problem
in (28) can be further written as:

min
x∈C

1

M

M∑
i=1

fi (x) = min
x∈C

M∑
i=1

n∑
j=1

fi,j (x) . (3)

In such a setting, the data stays at the workers and the task
of computing and evaluating the gradients is also relegated to
the workers. The master node is tasked with aggregating the
stochastic gradients. Throughout the paper, we will use all the
three versions of the optimization problem at hand and we will
make it clear in different settings as to which of these settings
we focus on.

B. Zeroth Order Optimization

In a zeroth order optimization, information can only be ob-
tained from a zeroth order oracle which yields evaluations of
the loss function at a queried point. Zeroth order optimization
methods are built around gradient estimation schemes from
sampled values of the objective function. Differently from first
order schemes, the estimated gradient is typically biased.
We briefly describe widely used zeroth order gradient approx-
imation schemes. The Kiefer-Wolfowitz stochastic approxi-
mation (KWSA, see [25]) scheme approximates the gradient
by sampling the objective function along the canonical basis
vectors. Formally, gradient estimate can be expressed as:

g(xt;y) =

d∑
i=1

F (xt + ctei;y)− F (xt;y)

ct
ei, (4)

where ct is a carefully chosen time-decaying sequence and
{ei}di=1 are the canonical basis vectors and d is the associ-
ated dimension of the optimization problem at hand. KWSA
requires d samples at each step to evaluate the gradient.
However, in order to avoid sampling the objective function d
times, random directions based gradient estimators have been
proposed recently (see, for example [11], [43]). The random
directions gradient estimator (RDSA) involves estimating the
directional derivative along a randomly sampled direction from
an appropriate probability distribution. Formally, the random
directions gradient estimator is given by,

g(xt;y, zt) =
F (xt + ctzt;y)− F (xt;y)

ct
zt, (5)

where zt ∈ Rd is a random vector sampled from a probability
distribution such that E

[
ztz
>
t

]
= Id and ct is a carefully

chosen time-decaying sequence. With ct → 0, both the
gradient estimators in (4) and (5) turn out to be unbiased
estimators of the gradient ∇f(xt). We now turn our attention
to zeroth order constrained stochastic optimization.
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C. Zeroth Order Constrained Stochastic Optimization

In a zeroth order optimization, with a constraint at hand,
a natural way would be to use a stochastic zeroth order
counterpart of projected gradient descent (PGD). In addition
to requiring a possibly expensive projection operation at each
step, a zeroth order PGD takes a step along the estimated
zeroth order gradient aggressively before applying a projec-
tion. The aggressive trajectory along the biased zeroth order
gradient might not be a descent direction and the projection
operation also can be potentially expensive leading to the
need of looking beyond PGD for zeroth order constrained
optimization. The theoretical properties of zeroth-order PGD
except for specific constraint sets remains largely unexplored
in literature. In particular, it is not clear as to what are the
convergence rates are for zeroth order PGD and its dependence
on the number of iterations and the dimension of the problem
at hand. Moreover, in applications we consider in this paper,
i.e., black-box adversarial attacks, as it will become clear later
in Section 8, it is important to find a feasible point efficiently
which satisfies the constraint than to find the optimal point as
long as the feasible point misclassifies most of the examples.
It is also important to understand the dimension dependence
of any zeroth order optimization scheme. Keeping all these
factors in mind, we focus on a projection free, gradient
free stochastic optimization framework and study Frank-Wolfe
algorithm and its variants in decentralized and distributed
settings in this paper.

4. FRANK-WOLFE: FROM FIRST ORDER TO ZEROTH ORDER

We revisit preliminaries pertaining to the classical Frank-
Wolfe algorithm next.

A. Background: Frank-Wolfe Algorithm

Frank-Wolfe algorithm involves approximating the objective
by a first-order Taylor approximation. In the case, when exact
first order information is available, i.e., one has access to a first
order oracle, a deterministic Frank-Wolfe method involves the
following steps:

vt = argmin
v∈C
〈∇f (xt) ,v〉

xt+1 = (1− γt+1)xt + γt+1vt,
(6)

where γt = 2
t+2 . At every epoch, a linear minimization

oracle (LMO) is queried. The minimization in (6) is a linear
program when C is given by linear constraints and can be
performed efficiently without much computational overload.
In particular, a lot of structured sets (see Table 1 of [22])
admit to low computational complexity based minimizations
for (6). Equivalently, primal-dual methods can be used in high-
dimensional settings, which still require an exact projection
which can be computationally taxing. It is worth noting that
the exact minimization in (6) can be replaced by an inexact
minimization of the following form, where a v ∈ C is chosen
to satisfy,

〈∇f (xt) ,v〉 ≤ argmin
v∈C
〈∇f (xt) ,v〉+ γtC1,

Algorithm 1 Deterministic Zeroth Order Frank Wolfe

Require: Input, Loss Function F (x), L (Lipschitz constant
for the gradients), Convex Set C, Sequences γt =
2
t+1 , ct = Lγt

d .
Output: : xT or 1

T

∑T
t=1 xt.

1: Initialize x0 ∈ C
2: for t = 0, 1, . . . , T − 1 do
3: Compute g(xt) =

∑d
i=1

F (xt+ctei)−F (xt)
ct

ei,
4: Compute vt = argmins∈C〈s,g(xt)〉,
5: Compute xt+1 = (1− γt)xt + γtvt.
6: end for

where C1 is a positive constant and the algorithm can be
shown to retain the same convergence rate (see, for example
[22]). The room for inexactness for the minimization in (6) and
it admitting to computationally efficient solutions for widely
used structured constraint sets makes Frank-Wolfe an attractive
avenue for the class of optimization problems being considered
in this paper.
Before getting into the stochastic case, we demonstrate how a
typical zeroth order Frank-Wolfe framework corresponds to an
inexact classical Frank-Wolfe optimization in the deterministic
setting.

B. Deterministic Zeroth Order Frank-Wolfe
The deterministic version of the optimization in (1) can be
re-stated as follows:

min
x∈C

F (x) . (7)

We state the main assumptions that we will be making use of
throughout the paper before proceeding further:

Assumption A1. In problem (1), the set C is bounded with
finite diameter R.

Assumption A2. fi’s are Lipschitz continuous with√
E
[
‖∇xfi(x; ·)‖2

]
≤ L1 for all x ∈ C.

Assumption A3. The function f is L-smooth, i.e., its gradient
∇f is L-Lipschitz continuous over the set C, i.e., for all x, y ∈
C

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ . (8)

Assumption A4. The zt’s are drawn from a distribution µ

such that M(µ) = E
[
‖zt‖6

]
is finite, and for any vector

g ∈ Rd, there exists a function s(d) : N 7→ R+ such that,

E
[
‖〈g, zt〉zt‖2

]
≤ s(d) ‖g‖2 .

Assumption A5. The unbiased gradient estimates, ∇Fi (x;y)
of ∇fi(x), i.e., Ey∼Pi

[∇Fi (x;y)] = ∇fi(x), ∀i =
1, · · · ,M satisfy

E
[
‖∇Fi (x,y)−∇fi(x)‖2

]
≤ σ2, ∀i (9)

In what follows, we demonstrate the equivalence of a typical
zeroth order Frank-Wolfe framework and that of an inex-
act classical Frank-Wolfe optimization. We consider Kiefer-
Wolfowitz stochastic approximation (KWSA) for gradient
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estimation for this purpose. In particular, the KWSA gradient
estimator in (4) can be expressed as follows:

g(xt) =

d∑
i=1

F (xt + ctei)− F (xt)

ct
ei

= ∇F (xt) +

d∑
i=1

ct
2
〈ei,∇2F (xt + λctei)ei〉ei, (10)

where we use Taylor’s theorem to obtain a second order
representation of the gradient and λ ∈ [0, 1]. The linear
optimization step then simplifies to:

〈v,g(xt)〉 = 〈v,∇F (xt)〉

+
ct
2

d∑
i=1

〈ei,∇2F (xt + λctei)ei〉〈v, ei〉

⇒ min
v∈C
〈v,g(xt)〉 ≤ min

s∈C
〈s,∇F (xt)〉+

ctLRd

2
, (11)

where R is the diameter of the constraint set C. In particular,
on choosing ct and γt to be γt

d and 2
t+1 respectively, we obtain

the following bound characterizing the primal gap:

Theorem 4.1 ( [47]). Assume the function F (·) is convex with
its gradient ∇F being L-Lipschitz continuous over the set C,
i.e., for all x, y ∈ C

‖∇F (x)−∇F (y)‖ ≤ L ‖x− y‖ . (12)

Given the zeroth order Frank-Wolfe algorithm in Algorithm 1,
we obtain the following bound:

F (xt)− F (x∗) =
Qns
t+ 2

, (13)

where Qns = max{2(F (x0)− F (x∗)), 4LR2}.

In summary, Theorem 4.1 shows the equivalence of the deter-
ministic zeroth order Frank-Wolfe algorithm and that of the
inexact classical Frank-Wolfe algorithm with the primal gap
being dimension independent. The dimension independence
comes at the cost of queries to the zeroth order oracle which
scales linearly with dimension. In the sequel, we will focus
on the random directions gradient estimator in (5) for the
stochastic zeroth order Frank-Wolfe algorithm.

C. Stochastic Frank Wolfe

In the classical Frank-Wolfe algorithm, the replacement of
the true gradient ∇f(xk) by its stochastic counterpart, i.e.,
∇F (xk;yk) could make the algorithm divergent due to an
additional variance term due to the gradient approximations.
In addition to the potential divergence, with the usage of an
unbiased estimate of the gradient makes the LMO constraint
to hold only in expectation. This particular issue is further
exacerbated due to biased gradient estimates. We use a well
known averaging trick (see, for example [47]) to counter this
problem which is as follows:

dt = (1− ρt)dt−1 + ρtg (xt,yt) , (14)

where g (xt,yt) is a gradient approximation, d0 = 0 and ρt
is a time-decaying sequence. The gradient smoothing scheme

allows for E
[
‖dt −∇f (xt)‖2

]
to go to zero asymptotically.

With the above averaging scheme, we replace the linear
minimization and the subsequent steps as follows:

dt = (1− ρt)dt−1 + ρtg (xt,yt)

vt = argmin
v∈C
〈dt,v〉

xt+1 = (1− γt+1)xt + γt+1vt. (15)

Before proceeding, to the algorithms we briefly describe an
improvised gradient estimation technique to be used in the
context of zeroth order optimization schemes. In addition to
the schemes, as outlined in (4) and (5), we employ a gradient
estimator (I-RDSA) by sampling m directions at each time
followed by averaging, i.e., {zi,t}mi=1 for which we have,

gm(xt;yt, zi,t)

=
1

m

m∑
i=1

(
F (xt + ctzi,t;y)− F (xt;y)

ct
zi,t

)
. (16)

The above scheme computes gradient estimates in m directions
before averaging them to somewhat counter the variance.
However, m is chosen to be independent of d so that the
query complexity does not scale with dimension. In order to
quantify the benefits of using such a scheme, we present the
statistics concerning the gradient approximation of RDSA and
I-RDSA. We have from [11] for RDSA,

Ezt∼µ,yt∼P [g(x;yt, zt)] = ∇f (x) + ctLv (x, ct)

Ezt∼µ,yt∼P

[
‖g(x;yt, zt)‖2

]
≤ 2s(d)E

[
‖∇F (x;yt)‖2

]
+
c2t
2
L2M(µ), (17)

Using (17), similar statistics for the improvised RDSA gradient
estimator can be evaluated as follows:

Ezt∼µ,yt∼P [gm(x;yt, zt)] = ∇f (x) +
ct
m
Lv (x, ct)

Ezt∼µ,yt∼P

[
‖gm(x;yt, zt)‖2

]
≤
(

1 +m

2m

)
c2tL

2M(µ)

+ 2

(
1 +

s(d)

m

)
E
[
‖∇F (x;yt)‖2

]
, (18)

where ‖v (x, ct)‖ ≤ 1
2E
[
‖z‖3

]
. A proof for (18) can be found

in [30]. As we will see later the I-RDSA scheme improves
the dimension dependence of the primal gap, but it comes at
the cost of m calls to the SZO. We are now ready to state
the zeroth order stochastic Frank-Wolfe algorithm which is
presented in algorithm 2.

5. DECENTRALIZED STOCHASTIC CONSTRAINED ZEROTH
ORDER OPTIMIZATION

For a decentralized setting, the network architecture typically
consists of workers and a master node. We specifically assume
there are M workers and one master node. In this scenario, we
assume that the data is distributed across all the workers which
in turn are all drawn from possibly different data distributions
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Algorithm 2 Decentralized Stochastic Gradient Free Frank
Wolfe
Require: Input, Loss Function F (x; y), Convex Set C, num-

ber of directions m, sequences γt = 2
t+8 ,

(ρt, ct)I−RDSA =

(
4

(1+ d
m )

1/3
(t+8)2/3

, 2
√
m

d3/2(t+8)1/3

)
Output: xT or 1

T

∑T−1
t=0 xt.

1: Initialize x0 ∈ C
2: for t = 0, 2, . . . , T − 1 do
3: At each worker i compute

I-RDSA: Sample {zn,t}mn=1 ∼ N (0, Id)

gi(xt;y) = 1
m

∑m
n=1

F (xt+ctzn,t,y)−F (xt,y)
ct

zn,t

4: Workers compute gi,t = (1− ρt)gi,t−1 + ρtgi (xt,y)
5: Push gi,t to the master node.
6: Master node computes gt = 1

M

∑M
i=1 gi,t.

7: Master node computes vt = argmins∈C〈s,gt)〉,
8: Master node computes xt+1 = (1− γt)xt + γtvt and

sends it to all nodes.
9: end for

and the workers try to solve the optimization problem in (1).
In essence, we address the following problem

min
x∈C

{
f(x) =

1

M

M∑
i=1

fi (x) =
1

M

M∑
i=1

Ey∼Pi [F (x;y)]

}
,

(19)

where Pi is the local data distribution at node i.
We specifically employ Algorithm 2 to solve the optimization
problem in (29) which we briefly describe below. At each
time, each worker samples a data point and corresponding
Gaussian random vectors to estimate the gradient using I-
RDSA. Upon evaluation of the gradient locally, each worker
uses gradient smoothing before sending it to the master node.
Upon receiving the smoothed gradient estimates from the
workers, the master node averages them and computes the
next iterate and sends the new iterate to the worker nodes.
The study of the primal gap for convex and non-convex loss
functions is based on the evolution of the mean square error of
the surrogate gradient term that we track through the gradient
averaging technique. We quantify the primal gap for convex
loss functions next.

Theorem 5.1 (Convex Losses [47]). Let Assumptions A1-A4
hold and let each fi be L-smooth. Let the sequence γt be given
by γt = 2

t+8 . In order to achieve a primal sub-optimality gap
of ε for convex loss functions in Algorithm 2,i.e.,

E [f(xt)− f(x∗)] ≤ ε, (20)

the number of queries to the SZO is given by O
(
d
ε3

)
.

We provide a brief proof sketch of Theorem 5.1. Theorem
5.1 establishes the dimension dependence of the primal gap
to be d1/3. The iteration dependence, i.e., O(T−1/3) matches
that of the stochastic Frank-Wolfe with first order informa-
tion as in [36]. The dimension dependence for the number
of queries cannot be improved as it matches the minimax

lower bound in [11]. Denote the Frank-Wolfe duality gap by
G (x) = maxv∈C〈∇F (x),x − v〉. The proof is built around
Lemma 3.3 from [47], which characterizes the evolution of the
primal gap for the function and the main result of the Lemma
can be stated as follows:

f(xt+1)− f(x∗) ≤ (1− γt+1)(f(xt)− f(x∗))

+ γt+1R‖∇f(xt)− gt‖+
LR2γ2t+1

2
. (21)

The performance of the pseudo-gradient estimate generated at
each worker node i can be characterized by,

E
[
‖∇fi(xt)− gi,t‖2

]
≤ 2ρ2t

(
σ2 + 2L2

1

)
+

ρt
2m2

c2tL
2M(µ) + 8ρ2t

(
1 +

s(d)

m

)
L2
1

+

(
1 +m

2m

)
ρ2t c

2
tL

2M(µ) +
2L2R2γ2t

ρt

+
(

1− ρt
2

)
E
[
‖∇fi(xt−1)− gi,t−1‖2

]
, (22)

and thus a bound for E
[
‖∇f(xt)− gt‖2

]
is obtained by

noting that

E
[
‖∇f(xt)− gt‖2

]
≤ 1

M

M∑
i=1

E
[
‖∇fi(xt)− gi,t‖2

]
.

Finally, to obtain bounds and characterize the recursions
above, we use the following Lemma from [47],

Lemma 5.2. Let z(k) be a non-negative (deterministic) se-
quence satisfying:

z(k + 1) ≤ (1− r1(k)) z1(k) + r2(k),

where {r1(k)} and {r2(k)} are deterministic sequences with
a1

(k + 1)δ1
≤ r1(k) ≤ 1 and r2(k) ≤ a2

(k + 1)2δ1
,

with a1 > 0 , a2 > 0 , 1 > δ1 > 1/2 and k0 ≥ 1. Then,

z(k + 1) ≤ exp

(
−a1δ1(k + k0)1−δ1

4(1− δ1)

)(
z(0) +

a2

kδ10 (2δ1 − 1)

)

+
a22δ1

a1 (k + k0)
δ1
.

Using Lemma 5.2 above, we obtain,

E
[
‖∇f(xt)− gt‖2

]
≤ 2Q

(t+ 8)2/3
, (23)

where Q is a constant characterized by the different algorithm
parameters L, R, σ2, d and m. Plugging (23) to (21) provides
the result needed.
For convex losses, the dual gap is given by,

E
[

min
t=0,··· ,T−1

G (xt)

]
≤ O

(
T−1/3

)
. (24)

The duality gap characterization is obtained by using the
following inequality for the duality gap from [47]:

γE [G (xt)] ≤ E [f(xt)]− E [f(xt+1)]

+ γRE [‖∇f(xt)− gt‖] +
LR2γ2

2
,
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where for E [‖∇f(xt)− gt‖] we use the relation in (23).
Technically speaking, while it is important to characterize the
primal gap to benchmark the performance, it is important to
characterize the dual gap as it is used as a stopping criterion
for Frank-Wolfe algorithms.
We quantify the performance of the algorithm for non-convex
loss functions using Frank-Wolfe duality gap. The usage of
Frank-Wolfe duality gap to characterize the convergence for
non-convex loss functions is standard in literature (see, for
example [44]. Also note that when, G (x) = 0, it also ensures
that x is a stationary point to the loss function. Thus, G (x)
may be regarded as a measure of stationarity for the iterate x.

Theorem 5.3 (Non-Convex Losses [47]). Let Assumptions A1-
A4 hold and let each fi be L-smooth. Let γt = T−3/4,∀t.
Then, in order to obtain a dual gap of ε for non-convex loss
functions in Algorithm 2 ,i.e.,

E
[

min
t=0,··· ,T−1

G (xt)

]
≤ ε, (25)

the number of queries to the SZO is given by O
(
d4/3

ε4

)
.

Theorem 5.3 establishes the dimension dependence of the
Frank-Wolfe duality gap for non-convex losses to be d1/3 and
has the same iteration dependence i.e., O(T−1/4) as that of
SFW in [44].
We briefly sketch the main proof idea of Theorem 5.3. The
proof for Theorem 5.3 follows similarly by using the following
inequality for the duality gap from [47]:

γE [G (xt)] ≤ E [f(xt)]− E [f(xt+1)]

+ γRE [‖∇f(xt)− gt‖] +
LR2γ2

2
. (26)

For each fi, we have that,

E
[
‖∇fi(xt)− gi,t‖2

]
= O

(
(d/m)2/3

(t+ 9)1/2

)
,∀ t = 0, · · · , T − 1

(27)

and, thus,

E
[
‖∇f(xt)− gt‖2

]
≤ 1

M

M∑
i=1

E
[
‖∇fi(xt)− gi,t‖2

]
= O

(
(d/m)2/3

(t+ 9)1/2

)
,∀ t = 0, · · · , T − 1

Using the bound derived in (23) and then summing both
sides of (26), we have that,

E
[

min
t=0,··· ,T−1

G (xt)

]
≤ E [f(x0)]− E [f(x∗)]

T 1/4

+
QncRd

1/3

T 1/4m1/3
+
LR2

2T
,

where Qnc is a constant summarizing the dependence of other
algorithm parameters. The stated result is thus established.
While the iteration dependence matches that of standard first
order methods, the biggest bottleneck for the above approach
is the gradient averaging technique and the mean square
error (MSE) of the gradient estimate. At this point, we ask
a pertinent question whether the MSE performance of the

gradient estimation can be improved, which leads us to the
next part of this paper, where we use SPIDER [12], a variance
reduction technique to further improve the performance.

6. DECENTRALIZED VARIANCE REDUCED STOCHASTIC
FRANK-WOLFE

In this section, for the optimization problem in (1), we
further enforce that P is a uniform distribution over [M ] =
{1, 2, . . . ,M} and the goal is to solve a special case of (1):

min
x∈C

f (x) = min
x∈C

1

M

M∑
i=1

fi (x) (28)

where each function i is available to the i-th node and each
node maintains a copy of the optimizer x. To further illustrate
stochasticity in the objective function, we assume that each
function fi(·) is composed of n component functions, i.e., the
finite sum optimization problem in (28) can be further written
as:

min
x∈C

f(x) =
1

M

M∑
i=1

fi (x) =

M∑
i=1

n∑
j=1

fi,j (x)

 . (29)

We employ the SPIDER variance reduction technique in
particular to address this problem.
The major difference with the stochastic setting is that a
suitably and carefully crafted variance reduction technique can
be used so as to reduce query complexity. Recently, [12] pro-
posed Stochastic Path-Integrated Differential Estimator (SPI-
DER) technique, for unconstrained optimization in centralized
settings for both first order and zeroth order oracles. In this
paper, we generalize SPIDER to the constrained, distributed
and zeroth order settings.

A. SPIDER

Stochastic Path-Integrated Differential EstimatoR, or SPIDER
is built for dynamic tracking, while avoiding excessive
querying to oracles and ultimately reduce query complexity.
We provide a brief overview of SPIDER before proceeding
further and refer the reader to [12] for a detailed treatment of
SPIDER.

Given an observed sequence x0:K , we want to track a sequence
Q(xk) for k = 0, . . . ,K with the assumption that an initial
estimate of Q(x0), Q̂(x0) is available. Furthermore, an unbi-
ased estimator ζk (x0:k) of Q(xk)−Q(xk−1) is also available
such that,

E [ζk (x0:k) |x0:k] = Q(xk)−Q(xk−1).

Then, the estimator Q̂(x0:K) = Q̂(x0) +
∑K
k=1 ζkx0:k is

the integrated (in the discrete sense) stochastic differential
estimate. This estimator when written in a recursive form
can be shown to reduce variance. It turns out that SPIDER
can be used to track many quantities of interest, such as
stochastic gradient, loss function values and zeroth order
gradient estimates.
Let q ∈ N+ denote a period parameter. At the beginning
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Algorithm 3 Decentralized Variance Reduced Zeroth Order
Frank Wolfe
Require: Input, Loss Function f(x), Convex Set C, period q,

Sample Sizes S1, S2

Output: xT .
1: Initialize x0 ∈ C
2: for t = 0, 2, . . . , T − 1 do
3: At each worker i compute
4: if then mod(t,q)=0
5: Draw S

′

1 = S1/Md samples for each dimension at
each worker i and compute its local gradient e>j gi(xt) =
1
n

∑n
j=1

fi,j(xt+ηej)−fi,j(xt)
η along each canonical basis

vector ej .
6: Each worker updates gi,t = gi (xt)
7: else
8: Draw S2 pairs of component functions and Gaussian

random vectors {z} at each worker i and update

gi(xt) =
1

|S2|
∑
j∈S2

fi,j(xt + ηz)− fi,j(xt)

η
z

− fi,j(xt−1 + ηz)− fi,j(xt−1)

η
z

9: Each worker updates gi,t = gi (xt) + gi,t−1
10: end if
11: Each worker pushes gi,t to the master node.
12: Master node computes gt = 1

M

∑M
i=1 gi,t and sends it

to all workers.
13: Master node computes vt = argmins∈C〈s,gt)〉,
14: Master node computes xt+1 = (1− γt)xt + γtvt and

sends it to all workers.
15: end for

of each period, i.e., mod(t, q) = 0, each worker computes
gradient estimates of all of its local component functions using
KWSA. It is noteworthy that KWSA is the most query hungry
scheme, but at the same time is very accurate. The master node
takes the average of all such averaged gradient received from
all workers and computes the next iterate and broadcasts it to
all workers. At other times, the workers select a mini-batch
of local component functions and use RDSA to estimate and
update the gradients which is then sent to the master node.
Then, master calculates the average of the M signals and
computes the next iterate and broadcasts it to all workers.
The full description of our proposed Decentralized Variance
Reduced Zeroth Order Frank Wolfe is outlined in Algorithm
3.
Intuitively speaking, the algorithm combines a query hun-

gry yet accurate gradient estimation with a query efficient
potentially inaccurate gradient estimation and tracking so as
to reduce query complexity. In the sequel, we characterize the
query complexity, the gradient tracking mean square error in
terms of ε primal gap for convex losses and ε Frank-Wolfe
duality gap for non-convex losses. The major improvement
of the variance reduction scheme is in terms of the gradient
tracking performance, i.e., with S2 = (2d+9)

√
n

n0
, q = n0

√
n

6 ,

where n0 ∈
[
1,
√
n
6

]
, the mean squared error of the tracked

gradient error is given by:

E
[
‖∇f(xt)− gt‖2

]
≤ ε2

3
. (30)

With the gradient estimation performance in place, we now
characterize the performance of the algorithm in 3,

Theorem 6.1. Let Assumptions A1-A4 hold and let each.
Consider algorithm 3 with S2 = (2d+9)

√
Mn

n0
, q = n0

√
Mn
6 ,

where n0 ∈
[
1,
√
Mn
6

]
, γt = O(ε) and S1 = Mnd, we have

that the number of queries required to obtain a Frank-Wolfe
duality gap of ε, i.e.,

E
[

min
t=0,··· ,T−1

G (xt)

]
≤ ε,

is given by O
(

min{d
√
n

ε2 , dε3 }
)

.

The proof of Theorem 6.1 follows similarly as that of the
proof of theorem 5.3 and the gradient approximation bound in
(30) is as derived in Lemma 11 of [12]. For a fair comparison
with the stochastic case, the query complexity obtained for
the finite-sum case can be reproduced by S2 = 30(2d+9)σ

n0ε
,

q = 5n0σ
ε , where n0 ∈

[
1,
√
Mn
6

]
, γt = O(ε) and S1 = 96dσ2

ε2 .
Theorem 6.1 improves the iteration dependence even further
from that of the vanilla decentralized stochastic Frank-Wolfe
in the regime where Mn ≥ ε−2. However, the dimension
dependence can not be improved any further. In the sequel,
we will focus on fully distributed settings where the network
architecture is devoid of a master node or a fusion center.

7. DISTRIBUTED ZEROTH ORDER FRANK WOLFE

In this section, we study the finite-sum version of the opti-
mization problem at hand, i.e.,

min
x∈C

f (x) = min
x∈C

1

M

M∑
i=1

fi (x) , (31)

in a network of M agents, where the i-th agent has access
to the i-th function. In this section, we consider a fully
distributed setup which is devoid of a central coordinator.
In order to exchange information, the nodes use peer-to-peer
message passing while conforming to pre-specified possibly
sparse communication graph. Unlike the decentralized setting,
the individual nodes are not synchronized in terms of the
gradient and the secant direction obtained from the linear
minimization oracle. The inter-node communication network
to which the information exchange between nodes conforms
to is modeled as an undirected simple connected graph G =
(V,E), with V = [1 · · ·M ] and E denoting the set of nodes
and communication links. The neighborhood of node n is
given by Ωn = {l ∈ V | (n, l) ∈ E}. The node n has degree
dn = |Ωn|. The structure of the graph is described by the
M × M adjacency matrix, A = A> = [Aij ], Aij = 1,
if (i, j) ∈ E, Aij = 0, otherwise. The graph Laplacian
L = D−A is positive semidefinite, with eigenvalues ordered
as 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λM (L), where D is given
by D = diag (d1 · · · dM ). Moreover, for a connected graph,
λ2(L) > 0 (see [9]).
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At every time instant t, an agent i exchanges its current iterate
with its neighbors and averages the iterates as follows:

x̄it ←
M∑
j=1

Wijx
j
t .

The weights Wij are collected in a matrix W. One of the
ways, in which the weight matrix W can be designed is as
follows W = I− δL, where L is the graph Laplacian. At the
new averaged iterate, i.e., x̄it, each agent i computes its local
gradient estimate git by using KWSA. As the first alternative,
the agents could just exchange the gradient estimates among
themselves. However, in such a case to ensure that the differ-
ence of the gradient estimate at each agent is O(γt) close in
`2 norm to the network averaged gradient would take O(log t)
rounds of communication. This observation follows from the
fact that,√√√√√ M∑

i=1

∥∥∥∥∥∥
M∑
j=1

Wijg
j
t − ḡt

∥∥∥∥∥∥
2

≤ |λ2(W)|

√√√√ M∑
i=1

∥∥git − ḡt
∥∥2.

Hence, we resort to a gradient tracking approach so as to en-
sure that only one round of communication is required. Thus,
to closely replicate the centralized gradient, the agents then
average the gradient estimates locally in their neighborhood
while using gradient tracking as follows:

Gj
t = ḡit−1 + git − git−1,

where git is computed using KWSA, i.e.,

git =

d∑
j=1

fi(x̄
i
t + ctej)− fi(x̄it)

ct
ej ,

where ct = γt/d and ej denotes the j-th canonical basis
vector. Note that, the agents query a zeroth order oracle here
to obtain the gradient estimate. Finally, the agents exchange
the gradient estimates as follows:

ḡit ←
M∑
j=1

WijG
j
t (32)

Finally, each node i undergoes the Frank-Wolfe step:

xit+1 ← (1− γt)x̄it + γtv
i
t where vit ∈ arg min

v∈C
〈ḡit,v〉,

It is worth noting that unlike other distributed optimization
protocols such as distributed SGD which involve just one
round of communication, a distributed Frank-Wolfe algorithm
requires two rounds of communication once for the iter-
ate and once for the gradient estimate. Without exchanging
iterates, it would take more rounds of communications at
each time step to ensure that the pseudo-gradient estimates
are close to each other. Similarly, without exchanging the
pseudo-gradient estimates Gj

t , the secant direction vit could
be possibly very different at different nodes thereby leading to
slow convergence. The algorithm is summarized in Algorithm
4. For notational simplicity and brevity, we employ KWSA for
gradient estimation. Similar results can also be obtained for
RDSA and I-RDSA based gradient approximation schemes.

Algorithm 4 Distributed Zeroth Order Frank-Wolfe

1: Input: Initial point xi1 for i = 1, . . . ,M .
2: for t = 1, 2, . . . do
3: Consensus: approximate the average iterate:

x̄it ←
M∑
j=1

Wijx
j
t

4: Gradient Estimation: At each node i, employ KWSA
to estimate gradient git

5: Aggregating: approximate the average gradient:

Gj
t = ḡit−1 + git − git−1

ḡit ←
M∑
j=1

WijG
j
t

6: Frank-Wolfe Step: update

xit+1 ← (1− γt)x̄it + γtv
i
t where vit ∈ arg min

v∈C
〈ḡit,v〉,

for all agent i ∈ [M ] and γt ∈ (0, 1] is a step size.
7: end for
8: Return: x̄it+1,∀ i ∈ [M ].

The performance of Algorithm 4 depends on how well the
averaged iterates and the averaged gradient estimates are
tracked across the network. Before performing the analysis,
we state the following assumption regarding the connectivity
of the communication graph.

Assumption A6. The inter-agent communication graph is
connected, i.e., λ2 (L) > 0.

We first establish the bounds concerning the tracking of the
averaged iterate and the averaged gradient estimate, for which
we use the bounding technique used in [51], where the authors
study a distributed first order Frank-Wolfe method. For the
averaged iterate tracking we have, for a step size γt = 1/tα

with α ∈ (0, 1] in algorithm 4, x̄it satisfies

max
i∈[M ]

‖x̄it − x̄t‖2 = O

(
1

tα

)
, ∀ t ≥ 1, (33)

where x̄t is the network averaged iterate at time t. Similarly,
we have for the averaged gradient tracking, with ct = γt/d
for KWSA,

max
i∈[M ]

‖ḡit − ḡt‖2 = O

(
1

tα

)
, ∀ t ≥ 1, (34)

where ḡt is the network averaged gradient estimate at time t
evaluated using KWSA. It is to be noted that the error bound
with respect to the network average of the iterates and the
gradient estimates depend on the connectivity of the graph.
Before proceeding to the main results, we mention the key
observation which drives the main results of Algorithm 4. The
analysis essentially depends on bounding

∥∥ḡit −∇f(x̄t)
∥∥. We
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also note the following equivalence, which plays a key role in
order to establish a suitable upper bound for

∥∥ḡit −∇f(x̄t)
∥∥,

1

M

M∑
i=1

ḡit =
1

M

M∑
i=1

Gi
t =

1

M

M∑
i=1

git = ḡt,

where the first equality follows from (32) and the second
equality can be shown with a simple induction argument.
With the above development, we are now ready to state the
convergence results concerning Algorithm 4.

Theorem 7.1 (Convex Losses). Let Assumptions A1-A6 hold
and let each fi be L-smooth. Let the sequence γt be given by
γt = 2

t+1 . In order to achieve a primal sub-optimality gap of
ε for convex loss functions in Algorithm 4, i.e.,

f(x̄t)− f(x∗) ≤ ε, (35)

the number of queries to the IZO is given by O
(
d
ε

)
.

Proof. We first note that

x̄t+1 = x̄t + γt

(
M∑
i=1

vit − x̄t

)
.

Define ht = f(x̄t) − f(x∗). Then, we have by using L-
smoothness of f and the finite diameter of the constraint set,

ht+1 ≤ ht +
γt
M
〈vit − x̄t,∇f(x̄t)〉+

γ2tLR
2

2
. (36)

We have the following chain of inequalities for each agent i:

〈vit − x̄t,∇f(x̄t)〉 ≤ 〈vit − x̄t, ḡ
i
t〉+R

∥∥ḡit −∇f(x̄t)
∥∥

≤ 〈v − x̄t, ḡ
i
t〉+R

∥∥ḡit −∇f(x̄t)
∥∥ , ∀v ∈ C

≤ 〈v − x̄t,∇f(x̄t)〉+ 2R
∥∥ḡit −∇f(x̄t)

∥∥ , ∀v ∈ C, (37)

where we use the fact that vit = argminv∈C〈ḡit,v〉. Now, we
have,

∥∥ḡit −∇f(x̄t)
∥∥ ≤ ∥∥∥∥∥ḡt − 1

M

M∑
i=1

∇fi(x̄it)

∥∥∥∥∥+
∥∥ḡit − ḡt

∥∥
+

∥∥∥∥∥ 1

M

M∑
i=1

∇fi(x̄it)−∇f(x̄t)

∥∥∥∥∥ , (38)

where for the 2nd and 3rd terms we use the bound derived in
(34), where we use α = 1. For the 1st term, we note that for
KWSA with ct = γt/d,∥∥∥∥∥ḡt − 1

M

M∑
i=1

∇fi(x̄it)

∥∥∥∥∥ ≤ Rγt
2
.

Using the above mentioned comparisons, we have that,∥∥ḡit −∇f(x̄t)
∥∥ ≤ c1γt,

where c1 is an appropriately chosen constant depending
on the different algorithm algorithm parameters, i.e., L, R
and M . Substituting back into (36) and defining v̄t ∈
argminv∈C〈∇f(x̄t),v〉, we have,

ht+1 ≤ ht + γt〈v̄t − x̄t,∇f(x̄t)〉+ c2γ
2
t . (39)

Note that,

〈v̄t − x̄t,∇f(x̄t)〉 ≤ 〈x∗ − x̄t,∇f(x̄t)〉 ≤ −ht,

where the first inequality holds for optimality of v̄t and the
second inequality holds because of convexity of f . Using this
inequality in (39) yields a recursion of the form:

ht+1 ≤ (1− γt)ht + c2γ
2
t ,

and thus we can conclude that ht = O(1/t) and as KWSA
uses d queries per gradient estimate, we have the result as
stated.

Theorem 7.2 (Non-Convex Losses). Let Assumptions A1-A6
hold and let each fi be L-smooth and G-Lipschitz. Let the
step size be chosen to be γt = 1√

t
. Then, in order to obtain

a dual gap of ε for non-convex loss functions in Algorithm 4,
i.e.,

min
t=bT/2c+1,··· ,T

G (x̄t) ≤ ε, (40)

the number of queries to the IZO is given by O
(
d
ε2

)
.

Proof. By the L-smoothness of f , we have,

f(x̄t+1) ≤ f(x̄t) + 〈∇f(x̄t), x̄t+1 − x̄t〉+
L

2
‖x̄t+1 − x̄t‖2 ,

and,

x̄t+1 = x̄t + γt

(
M∑
i=1

vit − x̄t

)
.

As vit, x̄t ∈ C, we have that ‖x̄t+1 − x̄t‖ ≤ Rγt. Using (37)
and (38) for α = 1/2, we have that,

f(x̄t+1) ≤ f(x̄t)− γt〈∇f(x̄t), x̄t)− v̄t〉+ c3γ
2
t

=≤ f(x̄t)− γtG(x̄t) + c3γ
2
t ,

where we used the fact that G(x̄t) = maxv∈C〈∇f(x̄t), x̄t −
v〉 = maxv∈C〈∇f(x̄t), x̄t − v̄t〉 and c3 is an appropriately
chosen constant which depends on the algorithm parameters.
Rearranging and summing from t = bT/2c+ 1 to t = T , we
have that,

T∑
t=bT/2c+1

γtG(x̄t) ≤ f(x̄bT/2c+1)− f(x̄T ) +

T∑
t=bT/2c+1

c3γ
2
t

≤ GR+ c3(1 + log 2) = GR+ c4.

We also have that,
T∑

t=bT/2c+1

γtG(x̄t) ≥ min
t=bT/2c+1,··· ,T

G (x̄t)

T∑
t=bT/2c+1

γt

≥ min
t=bT/2c+1,··· ,T

G (x̄t) c5
√
T .

Combining the above inequalities, yields

min
t=bT/2c+1,··· ,T

G (x̄t) = O

(
1√
T

)
.

Noting that KWSA requires d queries for each gradient
estimate, we have the result as stated.
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Fig. 1: Covtype Dataset: Summary of comparison between
1st order PGD (blue), 1st order FW (red), decentralized

stochastic 0th order FW (maroon) and distributed 0th order
FW (pink).

It is worth noting that the problem being considered in
this section is a deterministic version of Frank-Wolfe and
hence a better query complexity is obtained in comparison to
stochastic Frank-Wolfe methods. The dependence of network
connectivity is not explicit in the query complexity, but instead
is implicit in the tracking capacity of the network in terms
of the averaged iterate and the averaged gradient estimates.
A sparsely connected network would lead to slower network
tracking, while a densely connected network would result in
faster tracking. The query complexity in our results are in the
order sense and specifically explicitly quantify the dimension
dependence and the iteration dependence.

8. APPLICATIONS AND EXPERIMENTS

A. Convex Loss Functions

In this section, to study the performance of constrained
stochastic optimization and to understand the dependence of
the primal gap in terms of oracle calls, we solve a simple
lasso regression on the dataset covtype (n = 581012, d = 54)
from libsvm website2. We use the variant with feature values
in [0, 1] and solve the following problem:

min
‖w‖1≤1

1

2
‖y −X>w‖22

where X ∈ Rn×d represents the feature vectors and y ∈ Rn
are the corresponding targets. To benchmark the performance
of the proposed algorithm, we compare them with 1st or-
der PGD and 1st order Frank-Wolfe. For the decentralized
and distributed setting, we consider 20 nodes and equally
divide the data points among all the nodes. Furthermore for
the distributed setting, we consider a 20 node graph with
‖W − J‖ = 0.36, where W is the weight matrix of the
network under consideration and J = 11>/20 corresponds
to that of a completely connected graph. The metric ‖W−J‖
closely replicates the connectivity and the information flow in
the network. While, ‖W−J‖ = 0 corresponds to a completely
connected graph, ‖W−J‖ = 1 corresponds to the case when

2Available at https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

the nodes do not collaborate with each other. All the Frank-
Wolfe based algorithms pay a price for the projection free na-
ture of the algorithm and are outperformed by 1st order PGD.
However, in spite of being zeroth order algorithms and the
associated problem dimension being d = 54, the distributed
and decentralized zeroth order FW algorithms perform almost
as good as their first order counterpart. For the zeroth order
FW algorithms, we used I-RDSA with m = 6. While the
performance of the decentralized zeroth order stochastic FW
matches that of first order FW, the performance of distributed
zeroth order FW is fairly close to its decentralized counterpart.
This showcases zeroth order Frank-Wolfe based methods to
be effective choices for moderate dimensional (d < 100)
constrained optimization problems.

B. Non-Convex Loss Functions

In this section, we focus on adversarial attacks on machine
learning models where black-box optimization methods have
been successfully used recently. Adversarial attacks are an
important tool to analyze and certify robustness of a deploy-
able machine learning model. We give a brief overview of
adversarial attacks before proceeding further.
In the context of classification for a classifier, adversarial
examples are carefully designed inputs to the model, i.e.,
the classifier which have been perturbed or distorted so as
to make the output of the model erroneous. For example, an
adversarial example would be a perturbed image of a pig which
would still be a pig to a human eye while the classifier would
now output the class to be that of an airplane. While any
perturbation can be made to misclassify an input image, it is
important to ensure that there is minimal visual distortion to
a human eye. Typically, the visual distortion is pre-specified
in terms of `p-norm, for some fixed p, less than some εp.
Furthermore in the context of classifiers, adversarial attacks
can be further classified into untargeted and targeted attacks.
By untargeted attacks, we mean attack strategies which are
aimed at only misclassifying the input image to any other class
except the true class. However, targeted attacks are focused at
misclassifying the input image to a target class. For the rest
of the discussion, we focus on untargeted attacks.
Formally, a classifier may be defined as C : X 7→ Y with a
corresponding loss function L(x, y) for classification, where
x ∈ X represents the input to the classifier, y ∈ Y represents
the corresponding true class of the input, while X is the set
of inputs and Y is the set of labels. Technically speaking,
the procedure of generating a misclassified example can be
posed as an optimization problem. The procedure to generate
an adversarial example can be written down as finding x′, for a
given input x which maximizes L(x′, y) while still adhering to
the εp-closeness in terms of a specified metric, to the original
input. Formally, the aforementioned constrained optimization
can be cast in the following way:

xadv = argmax
x′:‖x′−x‖p≤εp

L(x′, y). (41)

Furthermore, adversarial attacks can be categorized into white-
box and black-box attacks based on the information accessible
to the attacker. White-box settings consist of scenarios where
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the entire classifier and the trained parameter values along with
the analytical form of the classifier loss function is available
to the attacker. Several white-box attack techniques such as
Fast Gradient Signed Method (FGSM) (see [15] for a detailed
treatment), Projected Gradient Descent (PGD) have been par-
ticularly effective in generating adversarial examples for state-
of-the-art deep networks built for challenging computer vision
datasets. While FGSM can only handle `∞ constraints when
it comes to visual distortion, PGD can handle all sorts of `p
constraints.
However, in most real world deployments, it is impractical
to assume complete access to the classifier and analytic form
of the corresponding loss function, which makes black-box
settings more realistic.
In a typical black-box setting, the adversary has only access to
a zeroth order oracle, which when queried for an input (x, y),
yields the value of the loss function L(x, y). In spite of the
information constraints and typically high dimensional inputs,
black-box attacks have been shown to be pretty effective
[20], [21], [37]. Black-box adversarial attacks can be broadly
categorized across a few different dimensions: optimization-
based versus transfer-based attacks, and score-based versus
decision-based attacks.
In the optimization-based adversarial setting, the adversarial
attack is formulated as a maximization of the classification
loss function which can be the accuracy of the classifier
or some continuous variant of it while accessing a zeroth
order oracle. The zeroth order information can be further
categorized into score-based and decision-based attacks. By
score-based attacks, we mean scenarios in which the attacker
directly observes a model loss, class probability, or some other
continuous output of the classifier on a given a example,
whereas in decision-based attacks, the attacker only gets to
observe the hard label predicted by the classifier. Decision-
based attacks have been studied by [2], [4], [5], and typically
require more queries to the classifier than the score-based
setting.
In the regime of score-based attacks, the first such iterative
attack on a class of binary classifiers was studied in [41].
A real-world application of black-box attacks to fool a PDF
malware classifier was demonstrated by [53], for which a
genetic algorithm was used. The paper [39] demonstrated the
first black-box attack on deep neural networks. Subsequently
black-box attacks based on zeroth order optimization schemes,
using techniques such as KWSA and RDSA were developed
in [5], [20]. Though [5] generated successful attacks attaining
high attack accuracy, the method was found to be extremely
query hungry which was then remedied to an extent by [20].
In [21], the authors exploit correlation of gradients across
iterations by setting a prior and use a piece wise constant
perturbation, i.e., tiling to develop a query efficient black-
box method. In addition to that, the method developed in
[21], is essentially a stochastic Frank-Wolfe based method
for the `2 constraint based adversarial attack. However, all
the aforementioned attacks generate perturbations for each
image separately, which brings us to the question, whether
one perturbation can be generated which misclassifies many
images and not just one. This leads us to the problem of

finding universal adversarial perturbation [38] which can be
formalized as follows as a constrained stochastic optimization
problem:

δ′ = argmax
‖δ‖p≤εp

E(x,y)∈(X ,Y) [L(x + δ, y)] . (42)

Given the need to take a pass over possibly high-dimensional
data for the optimization problem at hand in (42) and the
huge dimension and size of computer vision datasets such
as MNIST [28] where each image is 784 dimensional, this
problem turns out to be a perfect real world application for de-
centralized constrained stochastic optimization and as such for
decentralized stochastic Frank-Wolfe which we demonstrate
below. A crucial point to note here is that, it is not necessary
to find the global maximizer in (42). Instead it is just enough
to find a “good enough” feasible point in the constraint set
which misclassifies most images in the set.
We perform an experiment on MNIST to find a universal ad-
versarial perturbation. We use the pre-trained LeNet-5 model
available from Pytorch to demonstrate the attacks. We enforce
the information access limited to the softmax layer, i.e, only
score function values can be obtained for different classes after
feeding an input image. We set the constraint to be that of
`∞ with εp = 0.25 in (42). We use all the correctly classified
images from the 10,000 images (scaled to [0, 1]) in the MNIST
test set. We use the decentralized stochastic Frank-Wolfe
algorithm to solve this problem and benchmark it against the
centralized version. We pick 100 images from each class and
estimate gradients for each image using 20, 50 and 100 queries
respectively. The attack accuracy is then reported by adding
the perturbation to the correctly classified images from the
10,000 images (scaled to [0, 1]) in the MNIST test set. For
the decentralized setting, we consider a set of 10 worker nodes
with 100 images each, with 10 images drawn from each class.
For the distributed setting, we also consider a network of 10
nodes with 100 images each, with 10 images drawn from
each class. The network is reasonably well connected with
‖W−J‖ = 0.43, where W is the weight matrix of the network
under consideration and J = 11>/10 corresponds to that of a
completely connected graph. In order to generate the universal
perturbation, we average the δ’s obtained at each of the nodes
for the distributed setting. Figures 2-4 provide some examples
of the universal adversarial perturbation generated. Table I
summarizes the performance of a distributed stochastic FW
and benchmarks it with respect to the decentralized FW. As it
can be seen from Table I, the performance of the distributed
scheme in terms of the attack success rate is very close to that
of its decentralized counterpart.

TABLE I: Summary of `∞ universal adversarial perturbation
with ε = 0.25 MNIST attacks using Decentralized and

Distributed Frank-Wolfe (FW). The number of queries in the
columns denote the number of queries used per image.

Attack 20 queries 50 queries 100 queries

Decentralized FW 30.08% 41.38% 57.73%
Distributed FW 26.21% 38.62% 51.42%
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(a) Original Image: Class 4 (b) Perturbed Image: Class 8

Fig. 2: An image of 4 changed to 8 with the adversarial
perturbation

(a) Original Image: Class 7 (b) Perturbed Image: Class 3

Fig. 3: An image of 7 changed to 3 with the adversarial
perturbation

9. CONCLUSION

In this paper, we have focused on the problem of constrained
stochastic optimization built around zeroth order oracles. In
particular, we have reviewed latest developments in zeroth
order stochastic Frank-Wolfe frameworks for distributed and
decentralized constrained stochastic optimization. We have
illustrated quantitative aspects of the performance of stochastic
Frank-Wolfe framework in terms of number of queries and also
in terms of number of iterations. Finally, we have discussed the
effectiveness and the applicability of stochastic Frank-Wolfe
frameworks for black-box adversarial attacks in the context of
deep neural networks.
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