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Abstract— We study broadcast gossip algorithms to compute
the average of given initial sensor measurements. In the context
of wireless networks, an algorithm was proposed by Scaglione
et al. that allows a single node to broadcast at each time with
geometrically fast convergence to consensus. To improve the
rate of convergence to consensus, we go beyond this single
node broadcast approach and propose a queue-based broadcast
gossip algorithm, in which simultaneous node broadcasts are
allowed. Since packet collisions may happen, we choose time-
varying update weights. Using a novel interval-based consensus
error analysis to handle the time-dependent update weights, we
show that with appropriate choice of parameters, the proposed
algorithm converges to consensus in the mean-squared sense
geometrically fast. We prove that for the class of networks
modeled as non-bipartite Ramanujan graphs, the exponent
of convergence of the proposed algorithm is independent of
the number of nodes, unlike the single node broadcast case
which converges slowly in large networks. We also demonstrate
through simulations that our proposed algorithm improves the
rate of convergence for some other example networks.

1. INTRODUCTION

Distributed computation in multi-agent networks has been
instrumental in the evolution of a large body of literature per-
taining to distributed inference algorithms, e.g., distributed
estimation, detection, optimization [1]–[6]. Distributed av-
erage consensus is one of the most simple yet elegant
distributed computation schemes which involves computing
the global average of distributed data using iterative local
communications. Various extensions and variants of the basic
consensus scheme can be found in [7]–[11].
Gossip-based algorithms have been proposed to achieve con-
sensus, including randomized gossip algorithm [12], [13] and
geographic gossip algorithm [14]. By a gossip algorithm, we
mean specifically an algorithm in which each node receives
a packet from no more than one neighbor at any time instant.
For wireless sensor networks, which is the scenario we have
in mind in this paper, a natural gossip method would be
for a node to broadcast its value, so that all its neighbors
(nodes within some distance of the broadcasting node) can
receive this value correctly. This is called the broadcast
gossip method in [15], and will be the primary comparison
point of our paper. In that paper, a single node chosen
uniformly at random broadcasts its state value successfully
to all its neighbors, where the single broadcast ensures that
no collision of packets occurs. The neighbors then update
their own state value using fixed weights and the remaining
nodes keep their value unchanged.
In this paper, we are inspired by the intuition that allowing
simultaneous broadcasts should improve the rate of conver-
gence to consensus. However, this approach also increases
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the probability of packet collision. In fact, in a large network,
the probability will be high that a collision occurs somewhere
in the network, which will cause the packet reception rates at
different nodes to be unequal. This will result in significant
deviation of the converged consensus value (assuming that
consensus is indeed reached) from the initial (unweighted)
consensus value. Thus, there are two types of error we
focus on. The first is the consensus error, which measures
the deviation of the nodes’ individual state values from the
average (sample mean) of these values, to check whether
consensus is occurring. The second is the error-in-average,
which measures the deviation of the unweighted average of
the nodes’ state values from the initial unweighted average
of these values, since the latter is the desired consensus value
to which the states must be driven. These errors will be
formally defined in Section 2. Many traditional developments
in the consensus literature assume that some underlying
wireless scheduling mechanism is in place to equalize rates;
in contrast, in this paper, we use a realistic transmission
scheduling and deal with the impact of the resulting packet
collisions. The authors in [15] equalize the rates by choosing
equal probability of broadcast for all nodes, and avoiding
collisions by only allowing one node to transmit at any
time. However, the price paid is that N nodes will require
time proportional to N to obtain their turn at broadcasting,
resulting in slow convergence to consensus in large networks.
Since we allow simultaneous broadcasts in this paper, packet
collisions are inevitable. (An alternative strategy may be to
explore a type of ‘broadcast collision avoidance’ protocol,
which we do not pursue in this paper.) Therefore, we modify
the standard gossip algorithm for state update to use time-
varying update weights. Intuitively, the weights must be
chosen so that the expected weight that node i uses for
transmissions from j is the same as the one that j uses
for transmissions from i. However, in this paper the weights
are chosen adaptively using local information, since nodes
are not assumed to know the network structure. (Knowing
the network structure would need a burdensome preliminary
step where global information would need to be gathered and
appropriate parameters calculated, and burdensome mainte-
nance where the global information would need to be updated
and disseminated whenever the network changes.) However,
the adaptive choice of weights results in time dependencies,
which makes the algorithm significantly more complex to
analyze. A key result in the paper is, therefore, to prove for-
mally, using a novel interval-based analysis, that this adaptive
algorithm indeed results in consensus (with geometric decay
of the mean-squared consensus error). Intuitively, since the
algorithm allows simultaneous broadcasts, it should converge
faster to consensus, compared to [15]. Unfortunately, in this
preliminary work, the analytical bounds obtained by us,
although do indeed prove geometrically fast convergence to



consensus, are not at present sufficiently tight to prove faster
convergence in all networks, except in certain (important)
networks, such as non-bipartite Ramanujan graphs. Simula-
tion results, however, clearly show that our claim that the new
algorithm converges faster in general is indeed plausible.
The rest of the paper is organized as follows. In Section 2, we
provide the model and notation used. The queue-based broad-
cast gossip algorithm is introduced in Section 3. Section 4
shows a Lyapunov analysis of the proposed algorithm while
Section 5 provides the main result proving the convergence to
consensus of the proposed algorithm. Simulation experiments
of the proposed algorithm are discussed in Section 6 and
Section 7 concludes the paper.

2. NETWORK MODEL

Consider a network of N nodes (or sensors or agents).
The inter-sensor communication network is modeled as a
simple1 undirected connected graph G = (V,E), with
V = {1, · · · , N} and E denoting the set of nodes and
communication links, respectively. The edge set E includes
both directions of a link so that (i, j) and (j, i) are considered
separate edges in E. The neighborhood of node i is

Ni = {j ∈ V | (i, j) ∈ E} . (1)

We assume that if node i transmits, all the neighbors Ni can
hear the transmission. However, if another node k simulta-
neously transmits, some of these neighbors may experience
a packet collision, so that node i’s packet is lost. For the
purposes of this paper, the precise collision model is not
important since the algorithm we propose will adapt to the
physical communication model.
Node i has degree di = |Ni|. The structure of the graph
is described by the N × N adjacency matrix, A = A> =
[Anl], where Anl = 1, if (n, l) ∈ E, and Anl = 0,
otherwise. Let D = diag (d1, · · · , dN ). The graph Laplacian
L = D−A is positive semi-definite, with eigenvalues ordered
as 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λN (L). The eigenvector of L
corresponding to λ1(L) is (1/

√
N)1, where 1 is the vector

of all 1’s. Since we assume a connected graph, λ2(L) > 0.
This second eigenvalue is the algebraic connectivity or the
Fiedler value of the network.
We consider a time-slotted system. At time slot t ≥ 0,
each sensor i ∈ V has its local estimate xi(t) of the
global average which is called its state value. We denote
x>(t) = [x1(t), · · · , xN (t)]

> as the vector of estimates at
all the nodes at the end of time slot t. The ultimate goal of
an average consensus scheme is to drive the estimate x(t) as
close as possible to the initial average vector x(0)1, which
we call the unweighted consensus value, where

x(0) =
1

N

N∑
i=1

xi(0). (2)

Similarly, x(t) is the average of the nodes’ state values at
time slot t.
As mentioned in Section 1, there are two types of error
we focus on: 1. Consensus error, defined as x(t) − x(t)1,
which measures the deviation of the nodes’ individual state
values from the average of these values. 2. Error-in-average,
defined as x(t) − x(0), which measures the deviation of
the unweighted average of the nodes’ state values from the
unweighted consensus value .

1A graph is said to be simple if it is devoid of self loops and multiple
edges.

3. QUEUE-BASED BROADCAST GOSSIP ALGORITHM

As in standard gossip algorithms, each node must transmit its
current state to other nodes. In the proposed algorithm, node
i can only broadcast xi(t) in time slot t to its neighborhood
if it is included in the schedule of the network at that time.
Formally, every node i at any time slot t is assigned a
schedule σi(t). The schedule σi(t) takes the value 1 with
probability pi ∈ (0, 1), with σi(t) being independent for
each i, t. A schedule of the network can then be represented
as a vector σ(t), where σ(t) ∈ RN and σi(t) ∈ {0, 1}
for all i ∈ V . Node j experiences a collision if it receives
more than one packet in a given time slot. Let pji be the
probability that node j successfully receives a packet from
node i in a given time slot. In general, pji 6= pij , so that the
reception rate of packets from i to j may not be the same
in the other direction. We assume that a lower bound on this
probability p0 is known, so that pji > p0, ∀(j, i) ∈ E. Note
that the bound p0 is the only global knowledge needed at
each node in our algorithm. In particular, the graph G or the
values pi of other nodes are not required to be known. The
expected number of correct packet receptions in each time
slot is

∑
(j,i)∈E pji > p0|E| = p0d̄N , where d̄ is the average

degree of G. Thus, we can expect the number of successful
packet receptions to be proportional to the number of nodes
in our algorithm, unlike the single-node broadcast algorithm
in [15], which should allow faster convergence to consensus.
We describe one plausible scenario where this bound p0 can
be calculated. Assume that a collision occurs at j if and only
if two or more nodes in j ∪ Nj transmit in that time slot.
Thus, there is a successful reception of node i’s packet at
node j ∈ Ni, denoted by σji = 1, if node i is included in
the schedule but neither node j nor any of j’s neighbors is
included, i.e.,

σji = σiσj
∏

k∈Nj\i

σk, (3)

where σ = 1 − σ. Then, at each time slot, node j ∈ Ni
receives node i’s state value without collision, i.e. σji = 1,
with probability

pji = E[σji] = pi(1− pj)
∏

k∈Nj\i

(1− pk) ≥ p0, (4)

where p0 is a lower bound on the probability of successful
reception for all links that must be determined. Now if we
choose pi = p for all nodes i ∈ V , then a lower bound
is p0

.
= p(1 − p)∆, where ∆ = maxi=1,··· ,N di is the

maximum vertex degree of G. Note that ∆ ≥ 1 since G
is assumed connected. However, we stress again that the
scenario outlined above is not necessary, so long as a bound
p0 can be obtained by some means.
For each node j ∈ V , we consider |Nj | queues, qjk, k ∈ Nj ,
each corresponding to one of its neighbors. The length
(occupancy) of qjk at time t is Qjk(t). At the beginning
of each time slot, α ∈ (0, 1) (fractional) tokens enter each
queue. (The tokens and the queues are simply a means
for book-keeping and do not involve physical buffers.) The
maximum queue length is chosen to be αγ

p0
< 1 for suitably

chosen α > 0 and γ > p0. When a queue is at the
maximum allowed length, all tokens entering that queue are
rejected. Furthermore, once node j receives a packet from
node k successfully, it empties the corresponding queue qjk
completely, i.e., Qjk(t) tokens depart the queue (rather than
a constant number of tokens departing, as in typical queuing
literature).



Once the broadcast packet of node i is received, the neigh-
boring nodes which received it successfully, denoted by N 0

i ,
set their state values equal to the weighted average of their
current state value and the state value broadcast by node i,
i.e.,
xj(t+ 1) = (1−Qji(t))xj (t) +Qji(t)xi(t), ∀j ∈ N 0

i . (5)

Note that this consensus step differs from standard consensus
algorithms, since the queues are used as weights here, instead
of using a fixed weight as in [15].
Due to the queuing model, where the queues are emptied
completely when a packet is successfully received, the queue
length at the end of time slot t can be written as Qji(t) =

min
{
αTji(t),

αγ
p0

}
, where Tji(t) = t − max{k : k <

t, σji(k) = 1} is the number of time slots that node j
waited to receive the state value of node i without collision.
Therefore, with Tmax .

= γ
p0

, (5) can be written as

xj(t+ 1) =
(
1− αmin

{
Tji(t), T

max})xj (t)

+ αmin
{
Tji(t), T

max}xi(t), ∀j ∈ N 0
i . (6)

There will typically be more than one node broadcasting in
the same time slot. The above scheme is replicated for the
other successfully received packets as well. The nodes that
do not successfully receive any packet from their neighbors
do not update their state values. This procedure is repeated
in every time slot.
The update in (6) can be written in a compact manner as
follows:

x(t+ 1) =
(
I− αL(t)

)
x(t), (7)

where I denotes the identity matrix and the random non-
symmetric ‘Laplacian-like’ matrix L(t) has the j, i entry

Lji(t) =


∑
k∈Nj min {Tjk(t), Tmax}σjk(t) if j = i

−min {Tji(t), Tmax}σji(t) if j ∈ Ni
0 otherwise

(8)
The main result in this paper is to show that the broadcast
gossip algorithm (7) results in consensus asymptotically in
time. However, there are two difficulties that we face in
analyzing (7) - firstly, the state updates depend on time-
varying weights Qji(t), and secondly, these weights are
random variables that are dependent in time (since they are
queue lengths). In contrast, in [15] the weights are i.i.d.,
which allows a contraction-type analysis for every slot. Our
solution to this problem is to do a Lyapunov analysis over a
suitable large interval δ, which allows us to carefully consider
the impact of Markov Qji(t), as shown in Section 4-A.

4. CONSENSUS ERROR ANALYSIS

In this section we formally state and prove results concerning
the convergence of the average of the Laplacian-like matrix
sequence {L(t)} (see (8)) and the Lyapunov analysis of
the sequence {x(t)}, which will be crucial in establishing
consensus using the proposed algorithm in Section 5.

A. Convergence of Laplacian Average
For each t ≥ 0, we denote by Ft the natural filtration
generated by the Laplacian-like matrices {L(s)}ts=0 and the
queue lengths {Qji(s)}ts=0, ∀j ∈ {1, · · · , N},∀i ∈ Nj , i.e.,
Ft =

{
{L(s)}ts=0, {Qji(s)}ts=0, ∀j ∈ {1, · · · , N},∀i ∈ Nj

}
,
(9)

which is the σ-algebra induced by the Laplacian-like ma-
trices and the queue lengths. The following proposition
proves the convergence of the average of non-symmetric (i.e.,

directed) Laplacian-like matrices to a symmetric connected
Laplacian, which will be instrumental in establishing the
geometric convergence of the process {x(t)}.
Proposition 4.1. Assuming G is connected, the sequence
{L(t)} satisfies the following convergence condition for all
t ≥ 0:

lim
γ, δ
γ
→∞

E
[
(δ)−1.

(
L(t+ δ) + · · ·+ L(t+ 1)

)
| Ft

]
= L, (10)

where L is the symmetric (undirected) connected Laplacian
of graph G, i.e., with λ2

(
L
)
> 0. More precisely,

Lji =

{ |Nj | if j = i
−1 if j ∈ Ni
0 otherwise

(11)

where |Nj | is the degree of node j in graph G.

For convenience, we introduce the following notation:
Lt,δ

.
= (δ)−1.

(
L(t+ δ) + · · ·+ L(t+ 1)

)
, (12)

L̃t,δ = E
[
Lt,δ | Ft

]
− L. (13)

Also, for a vector z ∈ RN , we denote by zC its projection
onto the consensus subspace, i.e.,

zC =
1

N
11T z, (14)

and, by zC⊥ the projection onto the orthogonal subspace C⊥.

Proof of Proposition 4.1. Considering δ ≥ Tmax +1 = γ
p0

+

1 and defining T ini
ji = t−max{k : k < t, σji(k) = 1} (which

is known conditioned on Ft), for j ∈ Ni, we have
t+δ∑
k=t+1

E [Lji(k)|Ft]

= −
t+δ∑
k=t+1

E
[
min

{
Tji(k), Tmax}σji(k)|Ft

]
(15)

= −
t+δ∑
k=t+1

E
[
min

{
Tji(k), Tmax} |Ft]E [σji(k)|Ft] (16)

= −
t+δ∑
k=t+1

min{k−t−1,Tmax}∑
l=1

lp2ji(1− pji)l−1

−
t+δ∑
k=t+1

min
{
k − t+ T ini

ji , T
max
}

× pji(1− pji)min{k−t−1,Tmax} (17)

= −
Tmax∑
l=1

t+δ∑
k=min(t+l+1,t+Tmax+1)

lp2ji(1− pji)l−1

−
t+δ∑
k=t+1

min
{
k − t+ T ini

ji , T
max
}

× pji(1− pji)min{k−t−1,Tmax} (18)

= −
Tmax∑
l=1

(
δ −min

(
Tmax, l

))
lp2ji(1− pji)l−1

−
δ∑
l=1

min
{
l + T ini

ji , T
max
}
pji(1− pji)min(l−1,Tmax) (19)



= −δ + δ

∞∑
l=Tmax+1

lp2ji(1− pji)l−1

+

Tmax∑
l=1

l2p2ji(1− pji)l−1

−
Tmax∑
l=1

min
{
l + T ini

ji , T
max
}
pji(1− pji)l−1

−
δ∑

l=Tmax+1

Tmaxpji(1− pji)T
max

(20)

= −δ + δ
(
Tmaxpji(1− pji)T

max
+ (1− pji)T

max)
+

Tmax∑
l=1

l2p2ji(1− pji)l−1

−
Tmax∑
l=1

min
{
l + T ini

ji , T
max
}
pji(1− pji)l−1

−
δ∑

l=Tmax+1

Tmaxpji(1− pji)T
max

, (21)

where (17) follows from the facts that the probability distri-
bution of Tji(k) conditioned on Ft for all k > t is

Pr(Tji(k) = l|Ft) =

 pji(1− pji)l−1 if l = 1, 2, · · · , k − t− 1

(1− pji)k−t−1 if l = k − t+ T ini
ji

0 otherwise
(22)

and E [σji(k)|Ft] = pji for all k, and (18) follows from the
assumption that δ ≥ Tmax + 1. Therefore, for j ∈ Ni,∣∣∣∣∣(δ)−1.

t+δ∑
k=t+1

E [Lji(k)|Ft]− Lji

∣∣∣∣∣ ≤ Tmaxpji(1− pji)T
max

+ (1− pji)T
max

+
2− pji
δpji

+
1

δ

Tmax∑
l=1

min
{
l + T ini

ji , T
max
}
pji(1− pji)l−1

+
1

δ

δ∑
l=Tmax+1

Tmaxpji(1− pji)T
max

(23)

≤ Tmax(1− pji)T
max

+ (1− pji)T
max

+
2

δpji

+ Tmax 1− (1− pji)T
max

δ
+ Tmax(1− pji)T

max
(24)

≤ 3Tmax(1− p0)T
max

+
2

δp0
+
Tmax

δ
(25)

=
3γ

p0
(1− p0)

γ
p0 +

2

δp0
+

γ

δp0
(26)

≤ 3γ

p0
e−γ +

γ + 2

δp0
, (27)

where (25) and (27) follow from the facts that pji ≥ p0 and
1 − p0 ≤ e−p0 respectively. Since in each time slot k, by
the property of Laplacian-like matrices (8), L(k)1 = 0, we
have∣∣∣∣∣(δ)−1.

t+δ∑
k=t+1

E [Lii(k)|Ft]− Lii

∣∣∣∣∣ ≤ |Nj |.
(

3γ

p0
e−γ +

γ + 2

δp0

)
.

(28)

Thus, we have∥∥∥L̃t,δ∥∥∥
1
≤ 2∆

(
3γ

p0
e−γ +

γ + 2

δp0

)
, (29)

∥∥∥L̃t,δ∥∥∥
∞
≤ 2∆

(
3γ

p0
e−γ +

γ + 2

δp0

)
, (30)

where L̃t,δ is as defined in (13). From (29), (30) and
Holder’s inequality for matrices, ‖A‖2 ≤

√
‖A‖1 ‖A‖∞,

we conclude that∥∥∥L̃t,δ∥∥∥
2
≤ 2∆

(
3γ

p0
e−γ +

γ + 2

δp0

)
. (31)

Therefore,
∥∥∥L̃t,δ∥∥∥

2
→ 0 as γ, δγ →∞. �

Propositon 4.1 shows that with suitable choice of parameters,
the sample average of non-symmetric (directed) Laplacian-
like matrices converges to a symmetric (undirected) Lapla-
cian in expectation. The proposition below shows an appro-
priate choice of parameters.

Proposition 4.2. For each ε > 0, there exist a γ .
= γ(ε) >

p0 and a positive integer δ .
= δ(ε) ≥ γ

p0
such that

sup
t≥0

∥∥E [(δ)−1. (L(t+ δ) + · · ·+ L(t+ 1)) | Ft
]
− L

∥∥
2
≤ ε a.s.

(32)

Proof. The proof follows from Proposition 4.1. One such
choice is γ = 12∆

εp0
= and δ = 4∆(γ+2)

ε = 48∆2

ε2p0
+ 8∆

ε . �

B. Lyapunov Analysis of Consensus Error
In this section we will fix a (ε, γ, δ) triple and ana-
lyze the evolution of the periodically sampled subsequence
{x(kδ)}k≥0. This will allow us to analyze the consensus
error over the (large) interval δ, which will enable us to
carefully consider the Markov property of the queue weights.
Specifically, as a measure of squared distance from the
consensus subspace, we will study the evolution of the non-
negative functional

V (kδ) = x>(kδ)Lx(kδ) (33)

along the {x(kδ)} trajectory. Note that, since L is a sym-
metric connected Laplacian, it follows that

V (kδ) = x>C⊥(kδ)LxC⊥(kδ) ≥ λ2(L)
∥∥xC⊥(kδ)

∥∥2
2
, (34)

and hence, V (kδ) → 0 implies consensus of the subse-
quence, i.e.,

∥∥xC⊥(kδ)
∥∥

2
→ 0.

Later, in Section 5, we will obtain conditions on the weight
parameter α that ensure geometric decay of the sequence
{V (kδ)} to 0 and subsequently extend the (geometric)
consensus property of the subsequence {x(kδ)} to the entire
sequence {x(t)}.
Note that,

x ((k + 1)δ) = (I− αL ((k + 1) δ)) (I− αL (kδ + δ − 1))

· · · (I− αL (kδ + 1))x(kδ). (35)

Hence, the product (I− αL ((k + 1) δ)) · · · (I− αL(kδ + 1))
may be written as

(I− αL ((k + 1)δ)) (I− αL (kδ + δ − 1))

· · · (I− αL (kδ + 1)) (36)
= I− α (L ((k + 1)δ) + · · ·+ L (kδ + 1)) +R(k+1)δ (37)

= I− αδLkδ,δ +R(k+1)δ. (38)

To bound the error matrix R(k+1)δ in (38), we first note the
following:

Proposition 4.3. The norm of the Laplacian-like matrix L(t)
in each time slot t is bounded as

‖L(t)‖2 ≤
√

2∆
γ

p0
. (39)



Proof. It can be easily seen that in each time slot t

‖L(t)‖1 ≤ 2
γ

p0
, ‖L(t)‖∞ ≤ ∆

γ

p0
. (40)

From (40) and Holder’s inequality for matrices, we conclude
that

‖L(t)‖2 ≤
√

2∆
γ

p0
. (41)

�

Now, we choose α < p0
4∆δγ (which is tighter than our earlier

stated assumption that αγ
p0

< 1) so that αδ‖L‖2 < 1
2 . Then,

from definition of R(k+1)δ and Proposition 4.3, we have

‖R(k+1)δ‖2 ≤
α2δ2‖L‖22

1− αδ‖L‖2
≤ 2α2δ2‖L‖22 ≤

4∆α2δ2γ2

p20
, (42)

where L is the Laplacian-like matrix with the largest norm.
We now characterize the evolution of the {V (kδ)} sequence.
Note that, by (33) and (38),

V ((k + 1)δ) = xT (kδ)
(
I− αδLkδ,δ +R(k+1)δ

)>
L

×
(
I − αδLkδ,δ +R(k+1)δ

)
x(kδ) (43)

= V (kδ)− αδx>(kδ)
(
LLkδ,δ + Lkδ,δL

)
x(kδ)

+ x>(kδ)Jk+1x(kδ), (44)
where
Jk+1 = LR(k+1)δ + α2δ2L

>
kδ,δLLkδ,δ − αδL

>
kδ,δLR(k+1)δ

+R>(k+1)δL− αδR>(k+1)δLLkδ,δ +R>(k+1)δLR(k+1)δ.
(45)

From the properties of undirected Laplacians and directed
Laplacian-like matrices respectively (L is an undirected
Laplacian, whereas Lkδ,δ is a directed Laplacian-like matrix),
we have,
x>(kδ)L = x>C⊥(kδ)L,Lx(kδ) = LxC⊥(kδ), (46)

Lkδ,δx(kδ) = Lkδ,δxC⊥(kδ),x>(kδ)L
>
kδ,δ = x>C⊥(kδ)L

>
kδ,δ.

(47)

Also, since R(k+1)δ corresponds to a sum of products
of matrices, the right-most entry of each product being a
directed Laplacian-like matrix, we have

R(k+1)δx(kδ) = R(k+1)δxC⊥(kδ), (48)

x>(kδ)R>(k+1)δ = x>C⊥(kδ)R>(k+1)δ. (49)

From (42) and noting that
∥∥L∥∥

2
≤ 2∆, αδ‖L‖2 < 1

2 and
α < 1, it can be concluded that

‖Jk+1‖2 ≤ α232

(
∆δγ

p0

)2
.
= α2K(γ, δ), (50)

where

K(γ, δ) = 32

(
∆δγ

p0

)2

. (51)

From (46)-(49), we obtain∣∣∣x>(kδ)Jk+1x(kδ)
∣∣∣ =

∣∣∣x>C⊥(kδ)Jk+1xC⊥(kδ)
∣∣∣

≤ α2K(δ, α)‖xC⊥(kδ)‖22 ≤
α2K(γ, δ)

λ2

(
L
) V (kδ). (52)

We also have that,

E
[
x>(kδ)

(
LLkδ,δ + Lkδ,δL

)
x(kδ) | Fkδ

]
= 2x>(kδ)L

2
x(kδ) + x>(kδ)

(
LL̃kδ,δ + L̃Tkδ,δL

)
x(kδ)

= 2x>C⊥(kδ)L
2
xC⊥(kδ)

+ x>C⊥(kδ)
(
LL̃kδ,δ + L̃>kδ,δL

)
xC⊥(kδ). (53)

Moreover, the symmetry and connectedness of L imply

x>C⊥(kδ)L
2
xC⊥(kδ) ≥ λ2

2(L) ‖xC⊥(kδ)‖22

≥ λ2
2(L)

λN (L)
x>C⊥(kδ)LxC⊥(kδ) =

λ2
2(L)

λN (L)
V (kδ). (54)

Now, if δ and γ are chosen so that (32) holds, we have∣∣∣x>C⊥(kδ)
(
LL̃kδ,δ + L̃>kδ,δL

)
xC⊥(kδ)

∣∣∣
≤ 2ελN (L) ‖xC⊥(kδ)‖22 ≤

2ελN (L)

λ2(L)
V (kδ). (55)

By (43) and (52)-(55), we obtain

E [V ((k + 1)δ) | Fkδ] ≤ V (kδ)− 2αδλ2
2(L)

λN (L)
V (kδ)

+
2αδελN (L)

λ2(L)
V (kδ) +

α2K(γ, δ)

λ2(L)
V (kδ)

=

(
1− 2αδλ2

2(L)

λN (L)
+

2αδελN (L)

λ2(L)
+
α2K(γ, δ)

λ2(L)

)
V (kδ).

(56)
Finally, using the law of iterated expectations, we obtain
E [V ((k + 1)δ)]

≤
(

1− 2αδλ2
2(L)

λN (L)
+

2αδελN (L)

λ2(L)
+
α2K(γ, δ)

λ2(L)

)
E [V (kδ)] .

(57)

With the above development in place, we formally state and
prove the main result of this paper.

5. MAIN RESULT ON CONSENSUS CONVERGENCE

In this section we formally state the main result of this paper
concerning the convergence to consensus of the proposed
algorithm.

Theorem 5.1. In a connected graph, for the queue-based
broadcast gossip algorithm in (7)-(8), there exist small
enough α > 0 and appropriately large δ and γ such that the
sequence {x(t)} achieves consensus in mean-squared sense
geometrically fast. Formally, the convergence exponent is

lim sup
t→∞

1

t
log (E ‖xC⊥(t)‖) ≤ 1

2δ
log (1− f(α, ε, γ, δ)) < 0,

(58)

Here, f(α, ε, γ, δ) is given by

f(α, ε, γ, δ) = 2αδ

(
λ2
2

(
L
)

λN
(
L
) − ελN

(
L
)

λ2

(
L
) − αK(γ, δ)

2δλ2

(
L
)) , (59)

L is as given in (11) and K (γ, δ) is as defined in (51).

Proof of Theorem 5.1. We establish geometrically fast con-
sensus in the mean-squared sense in two steps. The first step
deals with establishing consensus of a subsequence and the
choice of parameters needed for this, while the second step
extends the geometrically fast mean-squared consensus to the
entire sequence.

Lemma 5.1. Let graph G be connected. Given the
queue-based broadcast gossip algorithm in (7)-(8), there
exist α and appropriately large δ and γ such that the
subsequence {x(kδ)} achieves consensus in mean-squared
sense geometrically fast.



Proof. In what follows, we provide a constructive proof that
identifies such α, γ and δ and a characterization of the
associated consensus exponent. To this end, it suffices to
show that (see (57)) (α, ε, γ, δ) can be chosen such that

0 < f(α, ε, γ, δ)

.
=

(
2αδλ2

2(L)

λN (L)
− 2αδελN (L)

λ2(L)
− α2K(γ, δ)

λ2(L)

)
< 1. (60)

First, choose ε > 0 small enough such that
ελN (L)

λ2(L)
≤ 1

4

λ2
2(L)

λN (L)
. (61)

Now, fixing ε as above, by Proposition 4.2, choose δ and α
such that the assertion in Proposition 4.2, i.e.,

sup
t≥0

∥∥∥L̃t,δ∥∥∥
2
≤ ε a.s. (62)

holds. (The proof of that proposition suggests one such
choice.) Now, define

αmax = min

(
p0

4∆δγ
,

δλ3
2

(
L
)

2K(γ, δ)λN
(
L
)) . (63)

Note that, by (61)-(63), for any α ∈ (0, αmax) we have that

f(α, ε, γ, δ) = 2αδ

(
λ2
2

(
L
)

λN
(
L
) − ελN

(
L
)

λ2

(
L
) − αK(γ, δ)

2δλ2

(
L
))

≥
αδλ2

2

(
L
)

λN
(
L
) > 0. (64)

Also, by (60), we have that,

f(α, ε, γ, δ) ≤
2αδλ2

2

(
L
)

λN
(
L
) ≤ 2αδλN

(
L
)

= 4αδ
∥∥L∥∥

2
= 4α∆δ < 1, (65)

since α < αmax ≤ p0
4∆γ and γ > p0.

Finally, by (57) and the above, we note that, as long as α ∈
(0, αmax), the subsequence {x(kδ)} satisfies

E [V ((k + 1)δ)] ≤ (1− f(α, ε, γ, δ))E [V (kδ)] , (66)
with f(α, ε, γ, δ) ∈ (0, 1). The above implies geometric
decay of {V (kδ)} as k →∞, i.e.,

lim sup
k→∞

1

k
log (E [V (kδ)]) ≤ log (1− f(α, ε, γ, δ)) < 0. (67)

Since by (34), V (kδ) ≥ λ2

(
L
)
‖xC⊥(kδ)‖22 and λ2

(
L
)
>

0, the geometric decay assertion in (67) also holds for the
process {xC⊥(kδ)}. �

In fact, we have shown the following constructive version of
Lemma 5.1.
Lemma 5.2. Let the hypotheses of Theorem 5.1 hold. Let
ε be chosen to satisfy (61). Further, using Proposition 4.2,
choose δ and γ to satisfy (62), and let αmax be defined as in
(63). Then, as long as the weight parameter α is chosen to
satisfy the condition α ∈ (0, αmax), we have

lim sup
k→∞

1

k
log (E [V (kδ)]) ≤ log (1− f(α, ε, γ, δ)) < 0 (68)

and

lim sup
k→∞

1

k
log
(
E
[
‖xC⊥(kδ)‖22

])
≤ log (1− f(α, ε, γ, δ))

< 0. (69)

Remark 5.1. Note that with the above choice of parameters,
(56) implies that the sequence {V (kδ)} is a (non-negative)
supermartingale. Using this property, we can further derive
pathwise (in the a.s. sense) convergence and in L1 for the

subsequences {V (kδ)} and {xC⊥(kδ)}. In fact, we have the
following:

P
(

lim sup
k→∞

1

k
log (V (kδ)) ≤ log (1− f(α, ε, γ, δ))

)
= 1, (70)

P
(

lim sup
k→∞

1

k
log
(
‖xC⊥(kδ)‖2

)
≤ 1

2
log (1− f(α, ε, γ, δ))

)
= 1, (71)

and

lim sup
k→∞

1

k
log
(
E
[
‖xC⊥(kδ)‖2

])
≤ 1

2
log (1− f(α, ε, γ, δ))

< 0. (72)

To extend the consensus results to the entire sequence
{x(t)}, first note that the assertions of Lemma 5.2 and
Remark 5.1 apply to other subsequences of the form
{Vkδ+c}k≥0 and {x(kδ + c)}k≥0 where c is an integer in
[0, δ − 1]. Now for instance, following (72), we have

lim sup
t→∞

1

t
log
(
E
[
‖xC⊥(t)‖2

])
= lim sup

k→∞
max
c

1

kδ + c
log
(
E
[
‖xC⊥(kδ + c)‖2

])
≤ 1

2δ
log (1− f(α, ε, γ, δ)) < 0. (73)

and similarly for the other assertions in Lemma 5.2 and Re-
mark 5.1, which continue to hold, but with the corresponding
exponents scaled by 1/δ as seen in (73). �

Remark 5.2. The exponent of geometric consensus derived
above is somewhat loose due to the complex bounds used
in the analysis, necessitated by the Markov queues used
as state update weights. This prevents us from comparing
our exponent directly with the one for the single-node
broadcast algorithm in [15] for general networks. However,
for networks where the graph Laplacian L has eigenvalue
ratio λN

(
L
)
/λ2

(
L
)

and maximum degree bounded for all
N , such as non-bipartite Ramanujan graphs, we can show
that while the convergence exponent of the broadcast gossip
algorithm in [15] goes to 0 as N → ∞, our exponent is
strictly negative, independent of the number of nodes in the
network. Thus, for such networks, our algorithm converges
quickly, since it makes use of simultaneous broadcasts.

We show the above property of fast convergence specifically
for a k-regular non-bipartite Ramanujan graph with fixed k
(see [16]). There,

λ2

(
L
)
≥ k − 2

√
k − 1, λN

(
L
)
≤ k + 2

√
k − 1. (74)

From the above bounds and (64), we conclude that

f(α, ε, γ, δ) ≥
αδ
(
k − 2

√
k − 1

)2
k + 2

√
k − 1

. (75)

Choosing ε such that (61) holds with equality, we have

ε =
1

4

λ3
2

(
L
)

λ2
N

(
L
) ≥ 1

4

(
k − 2

√
k − 1

)3(
k + 2

√
k − 1

)2 . (76)

Therefore, from the choice of parameters indicated in the
proof of Proposition 4.2 and noting that ∆ = k, we have

γ ≤
48k

(
k + 2

√
k − 1

)2
p0
(
k − 2

√
k − 1

)3 . (77)



Also, from (63), choosing α =
cδλ3

2(L)
2K(γ,δ)λN(L)

, where c is a
constant chosen such that α < p0

4∆δγ , and from (51), (74)
and (77), we have

αδ ≥
c′p40

(
k − 2

√
k − 1

)9
k4
(
k + 2

√
k − 1

)5 , (78)

where c′ = c
214×9 . Now, from (75) and (78), it can be

concluded that

f(α, ε, γ, δ) ≥
c′p40

(
k − 2

√
k − 1

)11
k4
(
k + 2

√
k − 1

)6 , (79)

where the last term is a positive constant. Thus, the exponent,
1
2δ log (1− f(α, ε, γ, δ)), is less than a negative constant. For
comparison, the exponent of the broadcast gossip algorithm
in [15] is given by log(1− g) where

g =
2β(1− β)

N
λ2

(
L
)

+
(1− β)2

N2
λ2
2

(
L
)
, (80)

and 1− β is the update weight. The factor 1
N in (80) is due

to the fact that only one node can transmit at each time. Note
that log(1− g)→ 0 as N →∞
While we are unable to formally show that our algorithm’s
exponent of convergence is better than in the single-broadcast
case in general graphs, we compare the two through simu-
lations in the next section.

A. Analysis of Error-in-average
In this section we characterize the error-in-average. Note that
x(t+1) = (I− αL(t+ 1))x(t) = x(t)−αL(t+1)xC⊥(t). (81)

Thus,

x(t+ 1)− x(t) = − 1

N
α(1TL(t+ 1))xC⊥(t). (82)

Using telescoping and the triangle inequality, we obtain
lim sup
t→∞

E [|x(t+ 1)− x(0)|]

≤
∞∑
s=0

E [|x(s+ 1)− x(s)|] (83)

≤ 1

N
α

(√
N.
√

2∆
γ

p0

) ∞∑
s=0

E
[
‖xC⊥(s)‖2

]
, (84)

where (84) follows from (82) and Proposition 4.3. The
summation in (84) is clearly bounded by the geometric
decay in (73) (a geometric bound for each t needs to be
obtained using (34), (63), (66) and (81), the details of which
are omitted). Therefore, the asymptotic modulus of error-
in-average can be expressed as a function of the exponent
in (73) as follows:
lim sup
t→∞

E [|x(t)− x(0)|]

≤ 1√
N
α
√

2∆
γ

p0

1

1− (1− f(α, ε, γ, δ))
1
2δ

2

√
λN
(
L
)

λ2

(
L
) ‖xC⊥(0)‖2

(85)

≤ 1√
N

√
2∆

αγ

p0

2δ

f(α, ε, γ, δ)
2

√
λN
(
L
)

λ2

(
L
) ‖xC⊥(0)‖2 (86)

≤ 1√
N

4
√

2∆
γ

p0

λ
3/2
N

(
L
)

λ
5/2
2

(
L
) ‖xC⊥(0)‖2 , (87)

where (87) follows from (64).

Remark 5.3. The upper bound in (87) shows that for
a k-regular non-bipartite Ramanujan graph with fixed k,
using the bounds in (74), the asymptotic error-in-average
is O( 1√

N
). Thus this error tends to zero for large graphs,

so that the consensus value is indeed accurate, similar to
[15], although the latter converges slowly compared to our
algorithm for this graph, as noted in Remark 5.2.

6. SIMULATION RESULTS

The performance of the queue-based broadcast gossip algo-
rithm proposed in this paper is illustrated through simulations
on the following networks of 100 nodes: networks modeled
as ring-structured and grid-structured graphs. These are com-
pared against the performance of the single-node broadcast
algorithm in [15]. In each case, the initial value of each node
is chosen uniformly at random from the interval (0, 100).
The single-node broadcast gossip algorithm uses β = 0.5,
where 1 − β is the fixed update weight, since Corollary 2
in [15] shows this to be the optimal value for such graphs
as N →∞. For the queue-based algorithm, the transmission
probability of each node is chosen to be p = 0.33 in ring-
structured network and p = 0.2 in grid-structured network.
γ = 0.15 for ring-structured network and γ = 0.1 for grid-
structured network; both use α = 0.5.
Figures 1 and 2 plot the expected norm of the consensus
error E [‖xC⊥(t)‖2] vs. the number of iterations for the two
networks. In each case, by choosing appropriate parameters,
our proposed algorithm converges much faster compared
to the single-node broadcast gossip algorithm, essentially
because we allow simultaneous broadcasts.

Fig. 1: Expected norm of the consensus error vs. number of iterations
achieved by queue-based and single-node broadcast gossip algorithms for

a network of 100 nodes modeled as a ring-structured graph.

Now we demonstrate that the requirement of the broadcast
gossip algorithm in [15], that only one node transmits at
each time, cannot be easily dispensed with in that scheme.
By increasing the probability of transmission in their scheme,
we can force simultaneous transmissions there, so that their
algorithm may also converge faster. However, due to the
resulting collisions, the consensus result obtained in that
fixed-weight algorithm will be unsatisfactory, as seen below.
Consider an unbalanced network consisting of two cliques
of 20 and 10 nodes, respectively, connected by one common
node. Assume that the initial value is -1 in all nodes of
the larger clique and +1 in all other nodes. It is assumed
that the nodes have reached a consensus when the difference
between the maximum and minimum values of the nodes
becomes less than 0.01 at which point the iterations are
stopped. Figure 3 plots modulus of the error-in-average
vs. the number of iterations before being stopped, for our



Fig. 2: Expected norm of the consensus error vs. number of iterations
achieved by queue-based and single-node broadcast gossip algorithms for

a network of 100 nodes modeled as a grid-structured graph.

proposed algorithm and the one with fixed weights. The
transmission probability of each node in both algorithms is
chosen to be p = 0.1 so that collisions occur frequently.
As illustrated in Figure 3, for any given number of itera-
tions, the consensus value of the algorithm in [15] deviates
significantly from unweighted consensus value, compared to
the error in our queue-weighted algorithm. Thus, the trade-
off between the time needed for convergence and the error-
in-average after convergence is significantly better in our
algorithm. This happens because the rate of correct packet
reception in the link (i, j) is different from that in link (j, i)
even in expectation in their case. i.e., the expected update
weight matrix is non-symmetric. While this will happen in
all graphs, the effect is particularly strong in our chosen
example because the node connecting the two cliques will
transmit packets successfully at a much higher rate to the
smaller clique than to the larger clique, resulting in a highly
non-symmetric expected weight matrix. This illustrates the
importance of using queue weights to automatically adapt to
these rate differences, as in our algorithm.

Fig. 3: Consensus value deviates significantly from unweighted consensus
value if fixed weights are used to update state.

7. CONCLUSION

This paper proposed a queue-based broadcast gossip al-
gorithm for distributed average consensus in an arbitrarily
connected network of sensors. Our algorithm allows simul-
taneous broadcasts to speed up convergence to consensus.
Since these broadcasts naturally cause collisions, we specify
a novel state update algorithm that uses certain queue lengths
as update weights. We proved the geometric convergence of
this algorithm to consensus, assuming an appropriate choice
of parameters. The algorithm does not require the nodes to
have global information, such as the structure of the network.
(It does need a single global parameter - a lower bound on
correct packet reception probability.) For the particular case
of networks modeled as non-bipartite Ramanujan graphs,
we have shown formally that the convergence exponent of
the proposed algorithm is independent of the number of
nodes in the network, which is important in large-scale
sensor networks. Tightening the bounds used to derive the
convergence exponent remains to be addressed in the future.
This could help us compare our algorithm formally with ones
that only allow a single node broadcast.
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