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Communication Efficient Distributed Weighted Non-Linear
Least Squares Estimation
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Abstract The paper addresses design and analysis of communication efficient
distributed algorithms for solving weighted non-linear least square problems in
multi-agent networks. Communication efficiency is highly relevant in modern ap-
plications like cyber-physical systems and internet of things, where a significant
portion of the involved devices have energy constraints in terms of limited battery
power. Furthermore, non-linear models arise frequently in such systems, like, e.g.,
with power grid state estimation. In this paper, we develop and analyze a non-
linear communication-efficient distributed algorithm dubbed CREDO −NL (non-
linear CREDO). CREDO −NL generalizes the recently proposed linear method
CREDO (Communication-efficient recursive distributed estimator) to non-linear
models. We establish for a broad class of non-linear least squares problems and
generic underlying multi-agent network topologies CREDO −NL’s strong consis-
tency. Furthermore, we demonstrate communication efficiency of the method, both
theoretically and by simulation examples. For the former, we rigorously prove that
CREDO −NL achieves significantly faster mean squared error rates in terms of
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the elapsed communication cost over existing alternatives. For the latter, the con-
sidered simulation experiments show communication savings by at least an order
of magnitude.

Keywords Distributed Estimation · Stochastic Approximation · Statistical
Inference · Non-linear Least Squares

1 Introduction

We consider distributed nonlinear least squares estimation in networked systems.
The networked system considered consists of heterogeneous networked entities or
agents where the inter-agent collaboration conforms to a pre-assigned possibly
sparse communication graph. The agents acquire their local, noisy, non-linear ob-
servations about the unknown phenomenon (unknown static vector parameter θ)
in a streaming fashion over discrete time instances t. The goal for each agent is to
continuously generate an estimate of θ over time instances t in a recursive fashion,
where the estimate update of an agent involves simultaneous assimilation of the
newly acquired local observations, and the received information through messages
with agents in its immediate neighborhood. The assumed setup is highly relevant
in several emerging applications in the context of cyber-physical systems (CPS)
and internet of things (IoT), like state estimation in smart grid, predictive mainte-
nance and production monitoring in industrial manufacturing systems, and so on.
For example, with continuous state estimation of a smart grid, the acquired mea-
surements (voltages, angles) are in general non-linear functions of the unknown
state; further, the measurements are inherently distributed across different phys-
ical locations (elements of the system), and they arrive continuously over time
with a prescribed sampling rate. Furthermore, the scale (network size) of the dis-
tributed system (e.g., a large scale micro-grid) and near-real time requirements on
the estimation results make distributed, fusion center-free processing a desirable
choice.

An important aspect of distributed estimation algorithms in the context of the
applications described above is communication efficiency, i.e., achieving good es-
timation performance with minimal communication cost. Real world applications
such as large-scale deployment of CPS or IoT typically involve entities or agents
with limited on board energy resources. In addition to the limited on board power,
the energy requirement for communication is an order or two more than computa-
tion. Hence, communication efficiency is a highly desirable trait in such systems.
Moreover, for large-scale systems which require continuous system monitoring, it
is crucial to reduce the communication cost as much as possible without compro-
mising on the performance of the inference task at hand, which then ensure longer
lifetime of such systems.

In this paper, we propose and analyze a communication-efficient, consensus +
innovations-type, distributed estimator for non-linear observation models that we
refer to as CREDO −NL. CREDO −NL generalizes the recently proposed linear
distributed estimator CREDO that is designed and works for linear measurement
(observation) models only. Specific contributions of the paper are as follows.

We propose the non-linear distributed estimator CREDO −NL that works for a
broad class of non-linear observation models, and where the model information in



terms of the node i’s sensing function and noise statistic is only available at the
individual agent i itself. With the proposed algorithm, each agent communicates
probabilistically sparsely over time. More precisely, the probability which deter-
mines whether a node communicates at time t decays sub-linearly to zero with t,
which then makes the communication cost scale sub-linearly with time t.

Despite dropping communications and the presence of non-linearities in the sensing
model, we show that the proposed algorithm achieves the optimal Θ(1/t) rate of
the mean square error (MSE) decay. The achievability of the optimal MSE decay
in terms of time t translates into significant improvements in the rate at which
MSE scales with respect to the per-agent average communication cost Ct up to
time t – namely from Θ(1/Ct) with existing methods, e.g., [16, 20, 30, 33–35, 39],

to Θ(1/C2−ζt ) with the proposed method, where ζ > 0 arbitrarily small. We also
establish strong consistency of the estimate sequence at each agent, showing that
each agent’s local estimator converges almost surely to the true parameter θ.
Simulation examples confirm significant communication savings of CREDO −NL
over existing alternatives, by at least an order of magnitude.

We now briefly review the literature on distributed inference and motivate our
algorithm CREDO −NL. Distributed inference algorithms can be broadly divided
into two classes based on the presence of a fusion center. The first class assumes
presence of a fusion center, e.g. [12, 24, 26, 27, 45]. The fusion center assigns sub-
tasks to the individual agents and subsequently fuses the information from different
agents. However, when the data samples are geographically distributed across the
individual agents and are streamed in time, fusion center-based solutions are im-
practical.

The second class of distributed inference methods is fusion center-free. These works
typically assume that the agents are interconnected over a generic network, and
each agent acquires its local measurements in a streaming fashion. These esti-
mators are iterative (recursive), where at each iteration (time instance), each
agent assimilates its new measurement and exchanges messages with its imme-
diate neighbors; see, e.g., [1, 3–5,7,14,19,23,25,28–31,33–35,38,44]. Most related
to our work are references that consider distributed estimation under non-linear
observation models, as we do here, or distributed convex stochastic optimization,
e.g., [16, 20, 30, 33–35, 39]. However, among these works, the best achieved MSE
rate of decay in terms of per-agent communication cost is Θ(1/t). In contrast,

we establish here a strictly faster communication rate equal to Θ(1/C2−ζt ) (ζ > 0
arbitrarily small). Finally, it is worth noting that there exist a few distributed
algorithms (without fusion node) that are also designed to achieve communication
efficiency, e.g., [15,22,42–44]. In [44], a data censoring method is employed to save
in terms of computation and communication costs. However, the communication
savings in [44] is a constant proportion with respect to a vanilla method which
uses all allowable communications at all times. In [22], the communication savings
come at a cost of extra computations. References [15, 42, 43] also consider a dif-
ferent setup than we do here, namely they study distributed optimization (with
no fusion center) where the data is available a priori (i.e., it is not streamed).
In terms of the strategy to save communications, references [15, 22, 42, 43] con-
sider, respectively, deterministically increasingly sparse communication, adaptive
communication scheme, and selective activation of agents. These strategies are



different from ours that utilizes a randomized, increasing, “sparsification” of com-
munications.

Within the class of consensus+innovations distributed estimation algorithms (see,
e.g., [19, 21]), the design of communication efficient methods has been addressed
in [37], see also [36], for linear observation models, wherein a mixed time-scale
stochastic approximation method dubbed CREDO has been proposed. We extend
here CREDO to non-linear observation models. Technically speaking, establish-
ing convergence and asymptotic rates of convergence for CREDO −NL involves
establishing guarantees for existence of stochastic Lyapunov functions for the es-
timate sequence. The update of the estimate sequence in CREDO −NL involves
a gain matrix which is in turn a function of the estimate itself. Moreover, in ad-
dition to the gain matrix being a function of the estimate, the sensing functions
exhibit localized behavior in terms of smoothness and global observability in the
proposed algorithm. Hence, the setup considered in this paper requires technical
tools different from CREDO, which we develop in this paper.
The rest of the paper is organized as follows. Section 2 describes the problem
that we consider and gives the needed preliminaries on conventional (centralized)
and distributed recursive estimation. Section 3 presents the novel CREDO −NL
algorithm that we propose, while Section 4 states our main results on the algo-
rithm’s performance. Section 5 presents the simulations experiments and finally,
we conclude in Section 7. Proofs of the main results are relegated to Appendix A.

2 Model and Preliminaries

2.1 Sensing and Network Models

Let θ ∈ Θ, where Θ ⊂ RM (the properties of it to be specified shortly) be an
M-dimensional parameter that is to be estimated by a network of N agents. Every
agent n at time index t makes a noisy observation yn(t), a noisy function of θ.
Formally the observation model for the n-th agent is given by,

yn(t) = fn (θ) + γn(t), (1)

where fn : RM 7→ RMn is a non-linear sensing function, where Mn �M , {yn(t)} ∈
RMn is the observation sequence for the n-th agent and {γn(t)} is a zero mean
temporally independent and identically distributed (i.i.d.) noise sequence at the
n-th agent with nonsingular covariance Rn, where Rn ∈ RMn×Mn . The noise
processes are independent across different agents. We state an assumption on the
noise processes before proceeding further. Throughout, we denote ‖·‖ as the L2-
norm.

Assumption M1. There exists ε1 > 0, such that, for all n, Eθ

[
‖γn(t)‖2+ε1

]
<∞.

The above assumption encompasses a general class of noise distributions in the
setup. The heterogeneity of the setup is exhibited in terms of the agent dependent
sensing functions and the noise covariances at the agents. Each agent is interested
in reconstructing the true underlying parameter θ. We assume an agent is aware
only of its local observation model, i.e, the non-linear sensing function fn(·) and



the associated noise covariance Rn and hence it has no information about the
observation matrix and noise processes of other agents.

The agents are interconnected through a communication network that we shall
assume throughout the paper is modeled as an undirected simple connected graph
G = (V,E), with V = [1 · · ·N ] and E denoting the set of agents (nodes) and com-
munication links, see [2]. (With the proposed CREDO −NL method, the available
links in E will be activated selectively across algorithm iterations in a probabilistic
fashion, as it will be detailed in Section 3.) The neighborhood of node n in graph
G is

Ωn = {l ∈ V | (n, l) ∈ E} . (2)

The node n has degree dn = |Ωn|. The structure of the graph is described by
the N × N adjacency matrix, A = A> = [Anl], Anl = 1, if (n, l) ∈ E, Anl = 0,
otherwise. Let D = diag (d1 · · · dN ). The graph Laplacian L = D − A is positive
semidefinite, with eigenvalues ordered as 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λN (L).
The eigenvector of L corresponding to λ1(L) is (1/

√
N)1N . The multiplicity of its

zero eigenvalue equals the number of connected components of the network; for a
connected graph, λ2(L) > 0. This second eigenvalue is the algebraic connectivity
or the Fiedler value of the network (see [6] for instance).
Example: Distributed Static Phase Estimation in Smart Grids

Many applications within cyber physical systems and internet of things can be
modeled as non-linear distributed estimation problems of type (1). As an exam-
ple, we briefly discuss here distributed static phase estimation in smart grids, while
we refer to, e.g., [13, 18] for more details. Here, graph G corresponds to a power
grid network of n = 1, ..., N generators and loads (here a single generator or a
single load is a node in the graph), while the edge set E corresponds to the set
of transmission lines or interconnections. (For simplicity, even though not neces-
sary, we assume that the physical interconnection network matches the inter-node
communication network.) Assume that G is connected. The state of a node n is
described by (Vn, φn), where Vn is the voltage magnitude and φn is the phase an-
gle. As commonly assumed, e.g., [13], we let the voltages Vn be known constants;
on the other hand, angles φn are unknown ant are to be estimated. Following
a standard approximation path, the real power flow across the transmission line
between nodes n and l can be expressed as, e.g., [13]:

Pnl(φ) = Vn Vl bnl sin(φnl), (3)

where φ is the vector that collects the unknown phase angles φn across all nodes,
bnl is line (n, l)’s admittance, and φnl = φn − φl. Denote by Em ⊂ E the set of
lines equipped with power flow measuring devices. The power flow measurement
at line (n, l) is then given by:

ynl(t) = Pnl(φ) + γnl(t) = Vn Vl bnl sin(θnl) + γnl(t), (4)

where {γnl(t)} is the zero mean i.i.d. measurement noise with finite moment
E[|γnl(t)|2+ε1 ], for some ε1 > 0. Assume that each measurement ynl(t) is assigned
to one of its incident nodes n or l. Further, let Ω′n denote the set of all indexes l
such that measurements ynl(t) are available at node n. Then, it becomes clear that
the angle estimation problem is a special case of model (1), with the measurement
vectors yn(t) = [ynl(t), l ∈ Ω′n]>, n = 1, ..., N , noise vectors γn(t) = [γnl(t), l ∈



Ω′n]>, n = 1, ..., N , and sensing functions fn(φ) = [Vn Vl bnl sin(φnl), l ∈ Ω′n]>.
n = 1, ..., N . It can be shown that under reasonable assumptions on noise an-
gle ranges (that correspond to the admissible parameter set Θ) and the smart
grid network and admittances structure, the assumptions we make on the sensing
model are satisfied, and hence CREDO −NL can be effectively applied; we refer
to [13,18] for details.

2.2 Preliminaries: Centralized Batch and Recursive Weighted Non-linear

Least Squares Estimation

In this subsection we go over the preliminaries of centralized and distributed
weighted non-linear least squares estimation.
Consider a networked setup with a hypothetical fusion center which has access to
the samples collected at all nodes at all times. In such a setting, in lieu of the
sensing model as described in (1), one of the classical algorithms that finds exten-
sive use is the weighted nonlinear least squares (WNLS) (see, for example, [16]).
The applicability of WNLS to fairly generic setups which are characterized by
the absence of noise statistics makes it particularly appealing in practice. We dis-
cuss properties of the WNLS estimator before proceeding further. Define the cost
function Qt as follows:

Qt (z) =
t∑

s=0

N∑
n=1

(yn(s)− fn(z))
>

R−1
n (yn(s)− fn(z)) . (5)

The hypothetical fusion center in such a setting generates the estimate sequence
{θ̂t} in the following way:

θ̂t ∈ argminz∈ΘQt(z). (6)

The consistency and the asymptotic behavior of the estimate sequence {θ̂t} have
been analyzed in the literature under the following weak assumptions:

Assumption M2. The set Θ is compact convex subset of RM with non-empty
interior int(Θ) and the true (but unknown) parameter θ ∈ int(Θ).

Assumption M3. The sensing model is globally observable, i.e., any pair θ, θ́ of
possible parameter instances in Θ satisfies

N∑
n=1

∥∥∥fn(θ)− fn(θ́)
∥∥∥2 = 0 (7)

if and only if θ = θ́.

Assumption M4. The sensing function fn(.) for each n is continuously differen-
tiable in the interior int(Θ) of the set Θ. For each θ in the set Θ, the (normalized)
gain matrix Γθ defined by

(8)



is invertible, where ∇f(·) ∈ RM×Mn denotes the gradient of f(·).

Smoothness conditions on the sensing functions, such as the one imposed by as-
sumption M3 is common in statistical estimation with non-linear observations
models. Note that the matrix Γθ is well defined at the true value of the parameter
θ as θ ∈ int(Θ) and the continuous differentiability of the sensing functions holds
for all θ ∈ int(Θ).

The asymptotic properties of the WNLS estimator in terms of consistency and
asymptotic normality are characterized by the following classical result:

Proposition 1 ([16]) Let the parameter set Θ be compact and the sensing function

fn(·) be continuous on Θ for each n. Let Gt be an increasing sequence of σ-algebras

such that Gt = σ
(
{{yn(s)}t−1

s=0}
N
n=1

)
. Further, denote by θ the true parameter to

be estimated. Then, a WNLS estimator of θ exists, i.e., there exists an {Gt}-adapted

process {θ̂t} such that

θ̂t ∈ argminz∈ΘQt(z), ∀t. (9)

Moreover, if the model is globally observable, i.e., Assumption M3 holds, the WNLS

estimate sequence {θ̂t} is consistent, i.e.,

Pθ

(
lim
t→∞

θ̂t = θ
)

= 1. (10)

Additionally, if Assumption M4 holds, the parameter estimate sequence is asymptoti-

cally normal, i.e.,

√
t+ 1

(
θ̂t − θ

)
D

=⇒ N (0,Σc) , (11)

where

Σc = (NΓθ)−1
, (12)

Γθ is as given by (8) and
D

=⇒ refers to convergence in distribution (weak convergence).

The centralized WNLS estimator above suffers from significant communication
overhead due to the inherent access to data samples across all agents at all
times. Moreover, the minimization in (6) requires batch processing due to the non-
sequential nature of the minimization. Recursive centralized estimators utilizing
stochastic approximation type approaches have been proposed in [10,11,32,40,41],
which mitigate the batch processing through the development of sequential albeit
centralized estimators. However, such recursive estimators still suffer from the
enormous communication overhead as the fusion center requires access to the data
samples across all agents at all times and the global model information in terms
of the sensing functions and the noise statistics across agents.



2.3 Preliminaries: Distributed WNLS

Sequential distributed recursive schemes conforming to the consensus + innovations

(see for example, [18] and equation (16) ahead) type update, where the agents’
knowledge of the model is limited to themselves have been proposed in [20, 39].
In [20], so as to achieve the optimal asymptotic covariance, the global model in-
formation is made available through a carefully constructed gain matrix update,
which adds additional computation complexity and communication cost. In con-
trast with [20], [39] introduces the trade off in terms of sub-optimality of the
asymptotic covariance while using local model information at individual agents
for evaluating the gain matrix and thus saving communication cost. However,
both the aforementioned algorithms in [20,39] have the number of communication
scales linearly with the number of per-node sampled observations {yn(t)}. This
paper builds on the ideas of sequential distributed recursive schemes catering to
non-linear observation models as proposed in [20, 39] to construct a communica-
tion efficient scheme without compromising on the performance in terms of the
mean square error. That is, we aim to achieve the order optimal MSE decay rate
of Θ(1/t) in terms of the number of per-node processed samples, which reducing
the Θ(t) communication cost which is a characteristic of previous approaches.

Before proceeding further, we briefly summarize the estimator in [39] which is
referred to as the benchmark estimator henceforth. The overall update rule at an
agent n corresponds to

x̂n(t+ 1) = xn(t)− βt
∑
l∈Ωn

(xn(t)− xl(t))︸ ︷︷ ︸
neighborhood consensus

− αt (∇fn(xn(t))) R−1
n (fn(xn(t))− yn(t))︸ ︷︷ ︸

local innovation

(13)

and
xn(t+ 1) = PΘ[x̂n(t+ 1)], (14)

where : Ωn is the communication neighborhood of agent n (determined by the
Laplacian L); ∇fn(·) is the gradient of fn; PΘ[·] the projection operator corre-
sponding to projecting on Θ; and {βt} and {αt} are consensus and innovation
weight sequences given by

βt =
β0

(t+ 1)δ1
, αt =

α0

t+ 1
, (15)

where α0, β0 > 0, 0 < δ1 < 1/2− 1/(2 + ε1) and ε1 was defined in Assumption M1.
From the asymptotic normality in Theorem 4.2 in [39] it can be inferred that the
MSE decays as Θ(1/t).
Communication Efficiency

The communication cost Ct is defined as the expected per-node number of com-
munications up to iteration t. Formally the communication cost Ct is given by

Ct = E

[
t−1∑
s=0

I{agent i transmits at s}

]
, (16)



where agent i is arbitrary (the expectation in (16) does not depend on i) and
IA represents the indicator of event A. The communication cost Ct for both the
centralized WNLS estimator (where all agents transmit their samples yn(t) to the
fusion center at all times t) and the distributed estimators in [20,39] is Ct = Θ (t),
where we note that the iteration count t is equivalent to the number of per node

samples collected till time t. Technically speaking, the MSE decays as Θ
(

1
Ct

)
.

3 CREDO −NL: A communication efficient distributed WNLS estimator

In this section, we present the CREDO −NL estimator. CREDO −NL is based on
a carefully chosen protocol which aids in making the communications increasingly
probabilistically sparse. Intuitively speaking, the communication protocol exploits
the idea that with a gradual information accumulation at the agents through
communications, an agent is able to accumulate sufficient information about the
parameter of interest which then allows it to drop communications increasingly
often. Technically speaking, for each node n, at every time t, we introduce a binary
random variable ψn,t, where

ψn,t =

{
ρt with probability ζt

0 else,
(17)

where ψn,t’s are independent both across time and the nodes, i.e., across t and n

respectively. The random variable ψn,t abstracts out the decision of the node n at
time t whether to participate in the neighborhood information exchange or not.
We specifically take ρt and ζt of the form

ρt =
ρ0

(t+ 1)ε/2
, ζt =

ζ0

(t+ 1)(1/2−ε/2)
, (18)

where 0 < ε < τ1 and 0 < τ1 ≤ 1. Furthermore, define βt to be

βt = (ρtζt)
2 =

β0
(t+ 1)

, β0 > 0. (19)

With the above development in place, we define the random time-varying Lapla-
cian L(t), where L(t) ∈ RN×N which abstracts the inter-node information exchange
as follows:

Li,j(t) =


−ψi,tψj,t {i, j} ∈ E, i 6= j

0 i 6= j, {i, j} /∈ E
−
∑
l 6=i ψi,tψl,t i = j.

(20)

The above communication protocol allows two nodes to communicate only when
the link is established in a bi-directional fashion and hence avoids directed graphs.
The design of the communication protocol as depicted in (17)-(20) not only decays
the weight assigned to the links over time but also decays the probability of the
existence of a link. The communication protocol depicted above closely replicates



real world networked setups constituting of entities with finite power and decreas-
ing quality of communication over time owing to the communications being power
hungry. We have, for {i, j} ∈ E:

E [Li,j(t)] = − (ρtζt)
2 = −βt = − c3

(t+ 1)

E
[
L2
i,j(t)

]
=
(
ρ2t ζt

)2
=

c4
(t+ 1)1+ε

. (21)

Thus, we have that, the variance of Li,j(t) is given by,

Var (Li,j(t)) =
β0ρ

2
0

(t+ 1)1+ε
− a2

(t+ 1)2
. (22)

Define, the mean of the random time-varying Laplacian sequence {L(t)} as L(t) =

E [L(t)] and L̃(t) = L(t)− L(t). Note that, E
[
L̃(t)

]
= 0, and

E
[∥∥∥L̃(t)

∥∥∥2] ≤ N2E
[
L̃2
i,j(t)

]
=

N2β0ρ
2
0

(t+ 1)τ1+ε
− N2a2

(t+ 1)2τ1
, (23)

where ‖·‖ denotes the L2 norm. The above equation follows from equivalence of
the L2 and Frobenius norms.
We also have that, L(t) = βtL, where

Li,j =


−1 {i, j} ∈ E, i 6= j

0 i 6= j, {i, j} /∈ E
−
∑
l 6=i Li,l i = j.

(24)

We formalize an assumption on the connectivity of the inter-agent communi-
cation graph before proceeding further.

Assumption M5. The inter-agent communication graph is connected on average,
i.e., λ2(L) > 0, which implies λ2(L(t)) > 0, where L(t) denotes the mean of the
Laplacian matrix L(t) and λ2 (·) denotes the second smallest eigenvalue.

Assumption M3 ensures consistent information flow among the agent nodes.
Technically speaking, the communication graph modeled here as a random undi-
rected graph need not be connected at all times. It is to be noted that assumption
M3 ensures that L(t) is connected at all times as L(t) = βtL. We now state addi-
tional assumption on the smoothness of the sensing functions for the distributed
setup.

Assumption M6. For each n, the sensing function fn(·) is Lipschitz continuous
on Θ, i.e., for each agent n, there exists a constant kn > 0 such that∥∥fn (θ)− fn

(
θ∗
)∥∥ ≤ kn ∥∥θ − θ∗

∥∥ , (25)

for all θ,θ∗ ∈ Θ.



With the communication protocol established, we propose an update, where
every node n generates an estimate sequence {xn(t)}, where xn(t) ∈ RM in the
following way:

x̂n(t+ 1) = xn(t)− βt
∑
l∈Ωn

ψn,tψl,t (xn(t)− xl(t))︸ ︷︷ ︸
neighborhood consensus

− αt (∇fn(xn(t))) R−1
n (fn(xn(t))− yn(t))︸ ︷︷ ︸

local innovation

(26)

and
xn(t+ 1) = PΘ[x̂n(t+ 1)], (27)

where Ωn denotes the neighborhood of node n with respect to the network repre-
sented by L, αt is the innovation gain sequence which is given by αt = α0/(t+ 1),
α0 > 0, and PΘ[·] the projection operator corresponding to projecting on Θ. The
random variable ψn,t determines the activation state of a node n. By activation
we mean, if ψn,t 6= 0 then node n can send and receive information in its neigh-
borhood at time t. However, when ψn,t = 0, node n neither transmits nor receives
information. The link between node n and node l gets assigned a weight of ρ2t if
and only if ψn,t 6= 0 and ψl,t 6= 0.

The update in (26) can be written in a compact manner as follows:

x̂(t+ 1) = x(t)− (L(t)⊗ IM ) x(t)

+ αtG(x(t))R−1 (y(t)− f (x(t))) . (28)

Here, ⊗ denotes the Kronecker product, and:

x(t)> = [x1(t)> · · ·xN (t)>]

x̂(t)> = [x̂1(t)> · · · x̂N (t)>]

f(x(t)) =
[
f1(x1(t))> · · · fN (xN (t))>

]>
R−1 = diag

[
R−1

1 , · · · ,R−1
N

]
G (x(t)) = diag [∇f1 (x1(t)) , · · · ,∇fN (xN (t))] .

Remark 31. The Laplacian sequence that plays a role in the analysis in this paper,

takes the form L(t) = βtL+ L̃(t), where L̃(t) the residual Laplacian sequence does not

scale with βt owing to the fact that the communication rate is chosen adaptively and

thus makes the Laplacian matrix sequence not identically distributed.

We refer to the parameter estimate update in (26) and the projection in (27) in
conjunction with the randomized communication protocol as the CREDO −NL al-
gorithm. We propose a condition on the sensing functions (standard in the liter-
ature of general recursive procedures) that guarantees the existence of stochastic
Lyapunov functions and, hence, the convergence of the distributed estimation pro-
cedure.

Assumption M7. The following aggregate strict monotonicity condition holds:
there exists a constant c1 > 0 such that for each pair θ, θ́ in Θ we have that

N∑
n=1

(
θ − θ́

)>
(∇fn(θ)) R−1

n

(
fn(θ)− fn(θ́)

)
≥ µ

∥∥∥θ − θ́
∥∥∥2 . (29)



The instrumental step in analyzing the convergence of the proposed algorithm
is ensuring the existence of appropriate stochastic Lyapunov functions (see, for
example [17–20]) which is in turn guaranteed by Assumption M7.

Remark 32. It is to be noted that the assumptions M6-M7 are only sufficient condi-

tions. Moreover, the assumptions which play a key role in establishing the main results,

i.e., Assumptions M2, M1, M6, and M7 are required to hold only in the parameter set

Θ instead of the entire space RM , which makes our algorithm to apply to very general

nonlinear sensing functions.

We consider a specific example to give more intuition about the assumptions in
this paper. If the fn(·)’s are linear, i.e., fn (θ) = Fnθ, where Fn is the sensing matrix

with dimensions Mn×M , Assumption M3 becomes equivalent to
∑N
n=1 F>nR−1

n Fn
being full rank. Under this context, the monotonicity condition in Assumption M7
is trivially satisfied by the positive definiteness of the matrix

∑N
n=1 F>nR−1

n Fn. We
formalize an assumption on the innovation gain sequence {αt} before proceeding
further.

Assumption M8. We require that α0 satisfies

α0µ ≥ 1, (30)

where µ is defined in Assumption M7 and α0 is the innovation gain at t = 0.

The communication cost per node for the proposed algorithm is given by Ct =∑t−1
s=0 ζs = Θ

(
t(1+ε)/2

)
, which in turn is strictly sub-linear as ε < 1.

4 Main Results

In this section, we present the main results of the proposed algorithm CREDO −NL,
while the proofs of the main results are relegated to section A. The first result con-
cerns with the consistency of the estimate sequence {xn(t)}.

Theorem 41. Let assumptions M1-M8 hold. Consider the sequence {xn(t)} generated

by (26) at each agent n. Then, for each n, we have

Pθ

(
lim
t→∞

xn(t) = θ
)

= 1. (31)

Theorem 41 verifies that the estimate sequence generated by CREDO −NL at any
agent n is strongly consistent, i.e., xn(t)→ θ almost surely (a.s.) as t→∞.

We now state a main result of this paper which establishes the MSE commu-
nication rate for the proposed algorithm CREDO −NL.

Theorem 42. Let the hypothesis of Theorem 41 hold. Then, we have,

Eθ

[
‖xn(t)− θ‖2

]
= Θ

(
1

t

)
. (32)

Furthermore, when βt = β0

t+1 , we have:

Eθ

[
‖xn(t)− θ‖2

]
= Θ

(
C
− 2
ε+1

t

)
, (33)

where 0 < ε < 1 and is as defined in (18).



We make several comments on Theorem 42. First, note that ε in Theorem 42
can be taken to be arbitrarily small. Hence, CREDO −NL achieves MSE rate
arbitrarily close to 1/C2t . This is a significant improvement over existing non-
linear distributed consensus + innovations estimation methods, e.g., [18,20]. They
have Θ(t) communication cost up to time t and a MSE rate of Θ(1/t), hence
achieving Θ(1/Ct) MSE communication rates. CREDO −NL achieves the order-
optimal Θ(1/t) MSE rate with a reduced communication cost, thus significantly
improving the MSE communication rate.

Next, observe that CREDO −NL algorithm, with βt = β0 (t+1)−1 has commu-

nication cost of Ct = Θ
(
t0.5(1+ε)

)
. From this, we can see that MSE as a function

of Ct in the case of τ1 = 1 is given by MSE = Θ(C−2/(1+ε)
t ). Of course, with a

further increase of τ1 beyond unity, communication cost reduces further. However,
it can be shown that in this case the algorithm no longer produces good estimates.
Namely, from standard arguments in stochastic approximation, it can be shown
that for βt = β0 (t + 1)−1−δ, with δ > 0, CREDO −NL’s estimate sequence may
not converge to θ.

5 Simulation Experiments

This section corroborates our theoretical findings through simulation examples
and demonstrates the communication efficiency of CREDO −NL.

Specifically, we compare the proposed communication-efficient distributed estima-
tor, CREDO, with the benchmark distributed recursive estimator in (13) which
utilizes all inter-neighbor communications at all times, i.e., has a linear communi-
cation cost. The example demonstrates that the proposed communication-efficient
estimator matches the MSE rate of the benchmark estimator. The simulation also
shows that the proposed estimator improves the MSE communication rate with
respect to the benchmark.
We generate a random geometric network of 10 agents, shown in Figure 1. The
relative degree1 of the graph is given by 0.4. The graph was generated as a con-
nected graph using the geometric graph model with radius r =

√
ln(N)/N . To

be specific, the first step involves generating 10 points in a unit square grid and
the nodes are connected with a link if the distance between them is less than√

ln(N)/N . We repeat the procedure until we get a connected graph instance.

We choose the parameter set Θ to be Θ =
[
−π4 ,

π
4

]5 ∈ R5. This choice of Θ
conforms with Assumption M2. The sensing functions are chosen to be certain
trigonometric functions as described below. The underlying parameter is set as
θ = [θ1, θ2, θ3, θ4, θ5] and thus θ ∈ R5. The sensing functions at the agents are
taken to be, f1(θ) = sin(θ1 + θ2), f2(θ) = sin(θ3 + θ2), f3(θ) = sin(θ3 + θ4), f4(θ) =
sin(θ4 + θ5), f5(θ) = sin(θ1 + θ5), f6(θ) = sin(θ1 + θ3), f7(θ) = sin(θ4 + θ2), f8(θ) =
sin(θ3 + θ5), f9(θ) = sin(θ1 + θ4) and f10(θ) = sin(θ1 + θ5). Thus, it is to be noted
that each node makes a scalar observation at time t. The noises γn(t) are Gaussian
and are i.i.d. both in time and across nodes and have the covariance matrix equal

1 Relative degree is the ratio of the number of links in the graph to the number of possible
links in the graph.
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Fig. 1: Network Deployment of 10 agents

to 0.25 × I10. The local sensing functions render the parameter θ locally unob-
servable, but the parameter θ is globally observable as under the parameter set
Θ considered in this setup, sin(·) is one-to-one and the set of linear combinations
of the θ components corresponding to the arguments of the sin(·)’s constitute a
full-rank system for θ. Hence, the global observability requirement specified by as-
sumption M3 is satisfied. The unknown but deterministic value of the parameter
is taken to be θ = [π/6, −π/7, π/12, −π/5, π/16]. Under the model considered
here in terms of the sensing functions as specified above and the parameter set

Θ =
[
−π4 ,

π
4

]5
it can be easily verified that the model conforms to the condi-

tions specified in Assumptions M3-M7. The projection operator PΘ onto the set
Θ defined in (14) is given by,

[xn(t)]i =


π
4 [x̂n(t)]i ≥ π

4

[x̂n(t)]i
−π
4 < [x̂n(t)]i <

π
4

−π
4 [x̂n(t)]i <

−π
4 ,

(34)

for all i = 1, · · · ,M .
The parameters of the benchmark and the proposed estimator are as follows. The
benchmark estimator’s consensus weight is set to 0.48(t+ 1)−1. For the proposed
estimator, we set ρt = 0.45(t+ 1)−0.01 and ζt = (t+ 1)−0.49. It is to be noted that
the Laplacian matrix considered for the benchmark estimator and the expected
Laplacian matrix for the proposed estimator, CREDO −NL are equal, i.e., L = L.
The innovation weight is set to αt = (0.3(t+20))−1. It is to be noted that with the
time shifted innovation potential, the theoretical results in this paper continue to
hold. As a performance metric, we use the relative MSE estimate averaged across
nodes:

1

N

N∑
n=1

‖xn(t)− θ‖2

‖xn(0)− θ‖2
,



further averaged across 100 independent runs of the estimators. In the above equa-
tion, xn(0) refers to the initial estimates at each node, which is set as xn(0) = 0.
Figure 2 plots the relative MSE decay in terms of the number of iterations or the
number of samples. It can be seen that the MSE decay of the benchmark estimator
in (13) and the MSE decay of the proposed estimator CREDO −NL practically
match with respect to the iteration count. Figure 3 plots the MSE decay of both
the estimators in terms of the communication cost per node. It can be seen that
at a relative MSE level of 10−1, the proposed estimator requires 20x less commu-
nications as compared to the benchmark estimator. At lower relative MSE levels,
for instance, at a relative MSE level of 0.03 the communication cost savings are in
the order of 100x. One can also notice a faster MSE decay in terms of the commu-
nication cost for CREDO −NL as compared to the benchmark, thus confirming
our theory.
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Fig. 2: Comparison of the proposed and benchmark estimators in terms of relative

MSE: Number of Iterations. The blue line represents the benchmark, while the red
line represents the proposed estimator.
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Fig. 3: Comparison of the proposed and benchmark estimators in terms of relative

MSE: Communication Cost Per Node. The blue line represents the benchmark,
while the red line represents the proposed estimator.

6 Discussion

In the context of existing work on non-linear distributed methods, e.g., [16, 20,
30, 33–35, 39]. current paper contributes by developing a method with a strictly

faster communication rate of Θ(1/C2−ζt )(ζ > 0 arbitrarily small) with respect to
existing Θ(1/Ct) rates. Further, with respect to existing works that develop meth-
ods designed to achieve communication efficiency, e.g., [15, 22, 42–44], we develop
here a different scheme with randomized increasingly sparse communications. Finally,
this paper is a continuation of works [36, 37] but, in contrast with [36, 37], it con-
siders non-linear observation models. This requires novel analysis techniques as
detailed in Section 1. It would be interesting to apply the proposed method on
real data sets, e.g., in the context of IoT or power systems applications, in addition
to synthetic data tests considered here.

7 Conclusion

In this paper, we have proposed CREDO −NL – a communication efficient dis-
tributed estimation scheme for non-linear observation models. We established
strong consistency of the estimate sequence at each agent and characterized the
MSE decay in terms of the per-agent communication cost Ct. CREDO −NL achieves

the MSE decay rate Θ
(
C−2+ζ
t

)
, where ζ > 0 and ζ is arbitrarily small. Future re-

search directions include extending the proposed algorithm to a mixed-time scale
stochastic approximation type algorithm, so as to achieve an asymptotic covariance
independent of the network, as well as to extend the presented ideas to distributed
stochastic optimization.



8 Abbreviations

Throughout the paper, we use the following abbreviations: IoT: Internet of Things;
CPS: cyber-physical systems; i.i.d.: independent identically distributed; CREDO:
Communication-efficient recursive distributed estimator; CREDO −NL: CREDO-
non-linear.
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A Proof of Main Results

We present the proofs of main results in this section.

Proof of Theorem 41.

Lemma A1. For each n, the process {xn(t)} satisfies

Pθ

(
sup
t≥0
‖x(t)‖ <∞

)
= 1. (35)

Proof. Since the projection is onto a convex set it is non-expansive. It follows that the inequal-
ity

‖xn(t+ 1)− θ‖ ≤ ‖x̂n(t+ 1)− θ‖ (36)

holds for all n and t. We first note that,

L(t) = βtL + L̃(t), (37)

where E
[
L̃(t)

]
= 0 and E

[
L̃2
i,j(t)

]
= c4

(t+1)1+ε
− c23

(t+1)2
.

Define, z(t) = x(t)−1N ⊗θ∗ and V (t) = ‖z(t)‖2. By conditional independence, we have that,

E [V (t+ 1)|Ft] ≤ V (t) + β2
t z
>(t)

(
L⊗ IM

)2
z(t)

+ α2
tEθ

[∥∥G (x(t))R−1 (y(t)− f (1N ⊗ θ))
∥∥2]

− 2βtz
>(t)

(
L⊗ IM

)
z(t)

− 2αtz
>(t)G (x(t))R−1 (f (x(t))− f (1N ⊗ θ))

+ 2αtβtz
>(t)

(
L⊗ IM

)
G (x(t))R−1 (f (x(t))− f (1N ⊗ θ))

+ α2
t

∥∥∥(f (x(t))− f (1N ⊗ θ))>G> (x(t))R−1
∥∥∥2 + z>(t)Eθ∗

[(
L̃(t)⊗ IM

)2]
z(t) (38)

where the filtration {Ft} may be taken to be the natural filtration generated by the random
observations, the random Laplacians i.e.,

Ft = σ

({
{yn(s)}Nn=1 , {L(s)}

}t−1

s=0

)
, (39)

which is the σ-algebra induced by the observation processes. We use the following inequalities
∀t ≥ t1,

z>(t)Eθ∗

[(
L̃(t)⊗ IM

)2]
z(t) ≤

c5 ‖zC⊥‖
2

(t+ 1)1+ε

z>(t)
(
L⊗ IM

)2
z(t)

(q1)

≤ λ2N (L)||zC⊥(t)||2;

z>(t)G (x(t))R−1 (f (x(t))− f (1N ⊗ θ)) ≥ c1||z(t)||2
(q2)

≥ 0;

z>(t)
(
L⊗ IM

)
z(t)

(q3)

≥ λ2(L) ‖zC⊥(t)‖2 ;

z>(t)
(
L⊗ IM

)
G (x(t))R−1 (f (x(t))− f (1N ⊗ θ))

(q4)

≤ c2 ‖z(t)‖2 , (40)

for c1 as defined in Assumption M7 and a positive constant c2. Inequalities (q1) and (q4)
follow from the properties of the Laplacian. Inequality (q2) follows from Assumption M7 and



(q4) follows from Assumption M6 since we have that ‖∇fn (xn(t))‖ is uniformly bounded from
above by kn for all n and hence, we have that ‖G (x(t))‖ ≤ maxn=1,··· ,N kn. We also have

Eθ

[∥∥G (x(t))R−1 (y(t)− f (1N ⊗ θ))
∥∥2] ≤ c4, (41)

for some constant c4 > 0. In (41), we use the fact that the noise process under consideration
has finite covariance. We also use the fact that ‖G (x(t))‖ ≤ maxn=1,··· ,N kn, which in turn
follows from Assumption M5. We further have that,∥∥G (x(t))R−1 (f (x(t))− f (1N ⊗ θ))

∥∥2 ≤ c3 ‖z(t)‖2 , (42)

where c3 > 0 is a constant. It is to be noted that (42) follows from the Lipschitz continuity
in Assumption M5 and the result that ‖G (x(t))‖ ≤ maxn=1,··· ,N kn. Using the inequalities
derived in (40), we have,

E [V (t+ 1)|Ft] ≤ (1 + c8α
2(t))V (t)

− c9
(
βt −

c5

(t+ 1)τ1+ε

)
‖zC⊥‖

2 + c6α
2(t). (43)

As c5
(t+1)1+ε

goes to zero faster than βt, ∃t2 such that ∀t ≥ t2, βt ≥ c5
(t+1)1+ε

. By the above

construction we obtain ∀t ≥ t2,

Eθ∗ [V (t+ 1)|Ft] ≤ (1 + α2(t))V (t) + α̂2
t , (44)

where α̂(t) =
√
c6αt. The product

∏∞
s=t(1 + α2

s) exists for all t. Now let {W (t)} be such that

W (t) =

( ∞∏
s=t

(1 + α2
s)

)
V2(t) +

∞∑
s=t

α̂2
s, ∀t ≥ t2. (45)

By (45), it can be shown that {W (t)} satisfies,

Eθ∗ [W (t+ 1)|Ft] ≤W (t). (46)

Hence, {W (t)} is a non-negative super martingale and converges a.s. to a bounded random
variable W ∗ as t→∞. It then follows from (45) that V (t)→W ∗ as t→∞. Thus, we conclude
that the sequences {xn(t)} are bounded for all n.

The following Lemma will play a key role in establishing the convergence of the estimate
sequence.

Lemma A2 (Lemma 4.1 in [21]). Consider the scalar time-varying linear system

u(t+ 1) ≤ (1− r1(t))u(t) + r2(t), (47)

where {r1(t)} is a sequence, such that

a1

(t+ 1)δ1
≤ r1(t) ≤ 1 (48)

with a1 > 0, 0 ≤ δ1 ≤ 1, whereas the sequence {r2(t)} is given by

r2(t) ≤
a2

(t+ 1)δ2
(49)

with a2 > 0, δ2 ≥ 0. Then, if u(0) ≥ 0 and δ1 < δ2, we have

lim
t→∞

(t+ 1)δ0u(t) = 0, (50)

for all 0 ≤ δ0 < δ2 − δ1. Also, if δ1 = δ2, then the sequence {u(t)} stays bounded, i.e.
supt≥0 ‖u(t)‖ <∞.



We now prove the almost sure convergence of the estimate sequence to the true parameter.
Following as in the proof of Lemma A1, for t large enough

Eθ [V (t+ 1)|Ft] ≤
(
1− 2c1αt + c7α

2
t

)
V (t) + c6α

2
t

≤ V (t) + c6α
2
t , (51)

as for t large enough, −2c1αt + c7α2
t < 0. Now, consider the {Ft}-adapted process {V1(t)}

defined as follows

V1(t) = V (t) + c6

∞∑
s=t

α2
s

= V (t) + c8

∞∑
s=t

(t+ 1)−2, (52)

for appropriately chosen positive constant c8.Since, {(t + 1)−2} is summable, the process
{V1(t)} is bounded from above. Moreover, it also follows that {V1(t)}t≥t1 is a supermartingale
and hence converges a.s. to a finite random variable. By definition from (52), we also have
that {V (t)} converges to a non-negative finite random variable V ∗. Finally, from (51), we have
that,

Eθ [V (t+ 1)] ≤ (1− c1αt)Eθ [V (t)] + c9(t+ 1)−2, (53)

for t ≥ t1. The sequence {V (t)} then falls under the purview of Lemma A2, and we have
Eθ [V (t)] → 0 as t → ∞. Finally, by Fatou’s Lemma, where we use the non-negativity of the
sequence {V (t)}, we conclude that

0 ≤ Eθ [V ∗] ≤ lim inf
t→∞

Eθ [V (t)] = 0, (54)

which thus implies that V ∗ = 0 a.s. Hence, ‖z(t)‖ → 0 as t → ∞ and the desired assertion
follows.

We will use the following approximation result (Lemma A3) and the generalized conver-
gence criterion (Lemma A4) for the proof of Theorem 41.

Lemma A3 (Lemma 4.3 in [9]). Let {bt} be a scalar sequence satisfying

bt+1 ≤
(

1−
c

t+ 1

)
bt + dt(t+ 1)−τ , (55)

where c > τ, τ > 0, and the sequence dt is summable. Then, we have,

lim sup
t→∞

(t+ 1)τ bt <∞. (56)

Lemma A4 (Lemma 10 in [8]). Let {J(t)} be an R-valued {Ft+1}-adapted process such that
E [J(t)|Ft]] = 0 a.s. for each t ≥ 1. Then the sum

∑
t≥0 J(t) exists and is finite a.s. on the

set where
∑
t≥0 E

[
J(t)2|Ft

]
is finite.

Proof of Theorem 42. Proceeding as in proof of Theorem 41, we have, for t large enough

Eθ [V (t+ 1)|Ft] ≤
(
1− 2c1αt + c7α

2
t

)
V (t) + c6α

2
t

≤ V (t) + c6α
2
t , (57)

Now, consider the {Ft}-adapted process {V1(t)} defined as follows

V1(t) = V (t) + c6

∞∑
s=t

α2
s

= V (t) + c8

∞∑
s=t

(t+ 1)−2, (58)



for appropriately chosen positive constant c8.Since, {(t + 1)−2} is summable, the process
{V1(t)} is bounded from above. Moreover, it also follows that {V1(t)}t≥t1 is a supermartingale
and hence converges a.s. to a finite random variable. By definition from (52), we also have
that {V (t)} converges to a non-negative finite random variable V ∗. Finally, from (57), we have
that,

Eθ [V (t+ 1)] ≤ (1− c1αt)Eθ [V (t)] + c8(t+ 1)−2

⇒ Eθ [V (t+ 1)] ≤ (1− c1αt)Eθ [V (t)] + c10αt(t+ 1)−1 (59)

for t ≥ t1. The summability of {αt} in conjunction with assumption M8 ensures that the
sequence {V (t)} then falls under the purview of Lemma A3, and we have

lim sup
t→∞

(t+ 1)Eθ [V (t+ 1)] <∞

⇒ Eθ [V (t)] = O

(
1

t

)
. (60)

Furthermore, from (58), we also have that

Eθ [V1(t)] ≤ Eθ [V (t)] +
c6π2

6

⇒ Eθ [‖xn(t)− θ‖2] = O

(
1

t

)
. (61)

It is to be noted that the communication cost Ct for the proposed CREDO −NL algorithm,

is given by Ct = Θ
(
t
ε+1
2

)
and thus the assertion follows in conjunction with (61).
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27. Chenxin Ma and Martin Takáč. Partitioning data on features or samples in
communication-efficient distributed optimization? arXiv preprint arXiv:1510.06688, 2015.

28. Gonzalo Mateos and Georgios B Giannakis. Distributed recursive least-squares: Stability
and performance analysis. IEEE Transactions on Signal Processing, 60(7):3740–3754,
2012.

29. Gonzalo Mateos, Ioannis D Schizas, and Georgios B Giannakis. Performance analysis of
the consensus-based distributed lms algorithm. EURASIP Journal on Advances in Signal
Processing, 2009:68, 2009.

30. A. Nedic and A. Ozdaglar. Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control, 54(1):48 61, Jan. 2009.
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Figure legend

The list of Figures is as follows.
Fig. 1. Network Deployment of 10 agents.
Fig. 2. Comparison of the proposed and benchmark estimators in terms of relative MSE:

Number of Iterations. The blue line represents the benchmark, while the red line represents
the proposed estimator.

Fig. 3. Comparison of the proposed and benchmark estimators in terms of relative MSE:
Communication Cost Per Node. The blue line represents the benchmark, while the red line
represents the proposed estimator.
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