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ABSTRACT
This paper focuses on the problem of distributed sequence
prediction in a network of sparsely interconnected agents,
where agents collaborate to achieve provably reasonable
predictive performance. An expert assisted online learning
algorithm in a distributed setup of the consensus+innovations
form is proposed, in which the agents update their weights
for the experts’ predictions by simultaneously processing the
latest network losses (innovations) and the cumulative losses
obtained from neighboring agents (consensus). This paper
characterizes the regret of the agents’ prediction in lieu of
the proposed distributed online learning algorithm and es-
tablishes the sub-linear regret of the agents’ predictions with
respect to the best forecasting expert.

Index Terms— Distributed Inference, Online Learning,
Expert-assisted Learning, Sequence Prediction, Multi-agent
Networks.

1. INTRODUCTION

The ubiquitous nature of online learning has made it an area
of interest across different fields, especially in the era of big
data. Due to heterogeneity and the enormity of data nowa-
days, it is very difficult to figure out the statistical properties
of distributions so as to apply appropriate learning and in-
ference algorithms based on the distributions. In such situ-
ations, where the statistical characterizations of distributions
from which the data is sampled from is unknown, many of-
fline learning algorithms are rendered ineffective as they are
based on assumptions which cannot be verified with the given
set of data. The difficulties encountered in such situations
motivates the use of online learning algorithms which do not
make any assumptions on the distributions from which the
data is sampled from. In the context of online algorithms,
expert assisted online algorithms have gained a lot of promi-
nence. Broadly speaking, in expert assisted learning scenar-
ios, an online learner uses the learning capabilities of refer-
ence learners or experts. In the context of expert assisted
online learning, we specifically look at expert assisted se-
quence prediction in this paper, where the forecaster aggre-
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gates the predictions from the reference predictors or the ex-
perts and then weighs the predictions of the experts in a sys-
tematic way by considering the past predictive performance
of the experts (see, for example [1, 2]). In real world sce-
narios, such as predicting stock prices, it is practically not
possible for a forecaster to have access to all the reference
stock price forecasters or experts. Also, there might be pri-
vacy concerns for an expert to share the predictions with every
forecaster. Motivated by the above discussion, we propose a
distributed sequence prediction algorithm of the consensus +
innovations type ([3, 4]) in a network of forecasting agents,
where each agent (forecaster) has access to its expert predictor
but computes the weights for other experts by simultaneously
processing neighborhood information concerning the tracked
losses (consensus) and latest observed losses (innovations).
Moreover, the inter-agent communication conforms to a pre-
assigned possibly sparse communication graph. Depending
on the scenario under consideration, the inter-agent commu-
nication might reflect the dynamics of communications be-
tween forecasters with respect to privacy and competitiveness.
Each agent in the proposed setup has access to a genie which
takes the weights of the experts as generated by an agent and
informs the agent of its loss. In spite of such a constrained
setup, where the agents’ do not have access to all the experts,
we establish the sub-linear regret of each forecasting agent
under some mild assumptions, where the regret is respect to
the best performing reference forecaster.
Prediction with expert advice in literature have been exten-
sively studied (see, for example [1, 2, 5]). The use of poten-
tial functions in sequential prediction was introduced in [6].
However, the unique nature of forecasting based on exponen-
tial potential which makes the weighting scheme a function
of the previous time instant loss makes it particularly attrac-
tive in practice. Exponentially weighted average forecasting
was first proposed and analyzed in [1]. The sub-linear re-
gret of such a scheme for a fixed horizon was first established
in [7]. Sub-linear regret bounds that hold uniformly over
time for exponentially weighted average forecasting, which
involve a doubling trick was established in [8]. To the best
of our knowledge, this is the first time the problem of on-
line sequence prediction is being addressed in a distributed
setup. For the proposed distributed algorithm of the consen-



sus+innovations form, we not only establish sub-linear regret
for a fixed horizon but also sub-linear regret bounds that hold
uniformly over time.
The rest of the paper is organized as follows. Spectral graph
theory, preliminaries and notation are discussed next. The
expert-assisted online learning setup is described in Section
2, where we also review some preliminaries concerning on-
line sequence prediction. Section 3 presents the proposed
distributed sequence prediction algorithm, while Section 4
concerns with the main results of the paper. Finally, Section
5 concludes the paper.
Spectral Graph Theory. The inter-agent communication
network is a simple1 undirected graph G = (V,E), where V
denotes the set of agents or vertices with cardinality |V | = N ,
and E the set of edges with |E| = M . If there exists
an edge between agents i and j, then (i, j) ∈ E. A path
between agents i and j of length m is a sequence (i =
p0, p1, · · · , pm = j) of vertices, such that (pt, pt+1) ∈ E,
0 ≤ t ≤ m − 1. A graph is connected if there exists a
path between all possible agent pairs. The neighborhood of
an agent n is given by Ωn = {j ∈ V |(n, j) ∈ E}. The
degree of agent n is given by dn = |Ωn|. The structure of
the graph is represented by the symmetric N ×N adjacency
matrix A = [Aij ], where Aij = 1 if (i, j) ∈ E, and 0 oth-
erwise. The degree matrix is given by the diagonal matrix
D = diag(d1 · · · dN ). The graph Laplacian matrix is defined
as L = D − A. The Laplacian is a positive semidefinite
matrix, hence its eigenvalues can be ordered and represented
as 0 = λ1(L) ≤ λ2(L) ≤ · · ·λN (L). Furthermore, a graph
is connected if and only if λ2(L) > 0 (see [9] for instance).

2. ONLINE LEARNING: SEQUENCE PREDICTION

In this section we discuss preliminaries about online sequence
prediction (see, [10] for example). Sequence prediction in an
online learning framework is applicable to fairly generic pre-
diction scenarios as it is assumption free as far as the sequence
is concerned and is an online algorithm. Expert assisted se-
quence prediction involves sequential decision making where
a forecaster’s goal is to predict an unknown sequence {yi}i=1

whose elements come from an action space Y by aggregat-
ing the predictions of reference forecasters or experts. The
forecaster’s predictions which are denoted as {p̂i} belong to
a decision space D, which is taken to be a convex subset of
a vector space. The forecaster computes his prediction in an
online sequential manner and the predictive performance is
compared to that of reference forecasters or experts. Tech-
nically speaking, the forecaster at time t has access to pre-
dictions {fi,t}Ni=1 from N reference forecasters or experts.
Based on these predictions, the forecaster comes up with its
own prediction p̂t which is when the true outcome yt is re-
vealed. The predictions of the forecaster and the experts are

1A graph is said to be simple if it is devoid of self loops and multiple
edges.

evaluated using a non-negative loss function l : D × Y → R.
We formalize some assumptions on the loss function l(·, ·)
and the decision space D before proceeding further.

Assumption A1. The loss function l : D ×Y → R is convex
in its first argument and it takes values in [0, 1].

Assumption A2. The decision space D is a convex subset of
a vector space.

The goal of the forecaster is to keep the cumulative regret
with respect to each reference forecaster as low as possible.
Formally, the regret with respect to expert n is defined as

Rn,t =

t∑
s=1

(l (p̂s, ys)− l(fn,s, ys)) = L̂t − Ln,t, (1)

where L̂t =
∑t
s=1 l (p̂s, ys) and Ln,t =

∑t
s=1 l (fn,s, ys)

which denote the cumulative loss of the forecaster and the
expert n at time t respectively. Technically speaking, the
forecaster’s goal is to attain a regret as possible across all
sequences of outcomes possible. Formally, the goal can be
represented as

max
n=1,··· ,N

Rn,t = o(t), or, equivalently

lim
t→∞

1

t

(
L̂t − Ln,t

)
= 0, (2)

where the convergence is uniform across all sequence of out-
comes. For the rest of the paper, we focus on weighted aver-
age forecasters. In case of weighted average forecasting, the
prediction at any time t are computed as follows:

p̂t =

∑N
n=1 wn,t−1fn,t∑N
n=1 wn,t−1

, (3)

wherewn,t is the weight associated with the n-th expert’s pre-
diction at time t. Note, that the prediction p̂t ∈ D as it is a
convex combination of the experts’ predictions. As sequence
prediction is an online sequential task, it is natural to see that
the weights assigned to the experts at time t depends on the
regret or the individual losses of the experts till time t − 1.
Hence, the weight assigned to expert n can be considered to
be an increasing function of the regret of the forecaster with
respect to expert n. One of the most widely used weight-
ing schemes is the exponential weighting scheme, where the
weights for the prediction at time t is computed as

wn,t−1 =
eηRn,t−1∑N
n=1 e

ηRn,t−1
, (4)

where η is positive and referred to as the learning parameter.
Then, the prediction of the forecaster at time t is given by,

p̂t =

∑N
n=1 e

−ηLn,t−1fn,t∑N
n=1 e

−ηLn,t−1
. (5)

It is interesting that with exponentially weighted average pre-
diction depends just on thepast performance of the experts



and not on the past predictions {p̂s}s≤t. Under rather weak
assumptions on the loss functions and decision space,i.e., as-
sumptions A1-A2 sub-linear regret has been established for
exponentially weighted average prediction.
The following result characterizes the regret bound for a spe-
cific time instant t.

Theorem 2.1 (Theorem 2.2 in [10]). Let Assumptions A1-A2
hold. Consider the exponentially weighted average predictor
as discussed in (4)-(5). For any fixed time t and η > 0, and
for all sequence of outcomes {ys}ts=1 ∈ Y the regret of the
exponentially weighted average predictor satisfies

L̂t − min
n=1,··· ,N

Ln,t ≤
lnN

η
+
tη

8
. (6)

In particular, if η is chosen to be
√

8 lnN
t , the right hand

side (RHS) in (6) becomes
√

t lnN
2 .

The above result which characterizes the regret upto a fixed
time t can be extended to hold for all times by switching to a
time-varying version of the parameter η. Formally, let ηt =√

8 lnN
t . Then, we have:

Theorem 2.2 (Theorem 2.3 in [10]). Let Assumptions A1-A2
hold. Consider the exponentially weighted average predictor
as discussed in (4)-(5). For all t ≥ 1, and for all sequence
of outcomes {ys}ts=1 ∈ Y the regret of the exponentially
weighted average predictor satisfies

L̂t − min
n=1,··· ,N

Ln,t ≤
√

lnN

8
+
√
2t lnN. (7)

It is readily seen that the regret bound in (7) satisfies the con-
dition that limt→∞

1
t

(
L̂t − Ln,t

)
= 0.

Theorems 2.1-2.2 require the forecaster to have access to all
of the experts’ predictions at all times, or equivalently the cu-
mulative losses at all times. However, in many practical appli-
cation scenarios, the access to predictions of all experts might
have privacy concerns and it might not be possible for a fore-
caster to track all the losses of the experts. A best motivat-
ing example would be predicting the stock prices in a stock
exchange, where multiple agents are trying to predict stock
prices where they have access to a few experts or a few agents
in their proximal neighborhood with whom they exchange
summarized information, i.e., losses and not the predictions.
No agent has access to all the experts in such a setting. Based
on such practical application scenarios, where the information
exchange in a multi-agent network setting is constrained to
an agent’s neighborhood, we propose a distributed approach
for sequence prediction scheme. To obtain a reasonable pre-
dictive performance, we propose a distributed online learning
algorithm in the consensus + innovations framework, where
every forecasting agent incorporates the information obtained
from the neighbors and the latest sensed information simulta-
neously.

3. DISTRIBUTED SEQUENCE PREDICTION

In this section, we introduce and develop the distributed se-
quence prediction algorithm. In section 4 we state the main
results concerning the regret bounds for the proposed dis-
tributed sequence prediction algorithm. We skip the proofs
due to space limitations.
There are N forecasting agents in the network. Each agent n
has access to its local expert n. At each time instant t, an agent
observes the loss of its own local expert and shares with its
neighborhood a cumulative loss type quantity (to be specified
soon) and the latest prediction loss and, in turn, receives the
same from its neighbors. Formally, every agent n tracks the
network losses across all the experts, albeit in a constrained
manner by updating Sd,n(t) ∈ RN . Formally the update can
be represented as,

Sd,n(t+ 1) = wnnSd,n(t) +
∑
l∈Ωn

wnlSd,l(t)︸ ︷︷ ︸
neighborhood consensus

+ wnnLd,n(t) +
∑
l∈Ωn

wnlLd,l(t)︸ ︷︷ ︸
innovation

, (8)

where Ld,n(t) ∈ RN , Ωn and wln’s denote the vector of
losses at forecasting agent n, the neighborhood of agent n
and the weight of the link from the agent n to agent l in the
inter-agent communication graph respectively. As forecasting
agent n has access only to the loss of its own expert, Ld,n(t)
has all its entries to be zero except the n-th entry. The update
in (8) can be written in a compact manner as follows:

Sd(t+ 1) = (IN ⊗W) (Sd(t) + Ld(t)) , (9)

where Sd(t+1) =
[
S>d,1(t+ 1), · · · ,S>d,N (t+ 1)

]> and Ld(t+

1) =
[
L>d,1(t+ 1), · · · ,L>d,N (t+ 1)

]>. The information ex-
change in the update (8) is limited to a pre-specified possibly
sparse inter-agent communication graph, where the weights
are designed according to W = I− δL, where L is the graph
Laplacian. It is to be noted that the entries of the weight
matrix W = I − δL are designed in such a way that W
is non-negative, symmetric, irreducible and stochastic, i.e.,
each row of W sums to one. Furthermore, the second largest
eigenvalue in magnitude of W, denoted by r, is strictly less
than one (see [11]). Moreover, by the stochasticity of W, the
quantity r satisfies r = ||W − J||, where J = 1

N 1N1>N .
The quantity r corresponds to the information flow in the net-
work. For example, r = 0 corresponds to the completely
connected setting, while r = 1 corresponds to the setting
where each agent is by itself. The choice of δ is taken to
be 2

λ2(L)+λN (L) (see [12]). We state an assumption on the
inter-agent communication graph before proceeding further,

Assumption A3. The inter-agent communication network
modeling the information exchange among the forecasting
agents is connected, i.e., λ2 (L) > 0, where L denotes the
associated graph Laplacian matrix.



The weight for the forecasting expert l at forecasting agent n
at time t, wnl,t is computed as follows:

wnl,t =
ee
>
l ηSd,n(t)∑N

m=1 e
e>mηSd,n(t)

, (10)

where η is positive and referred to as the learning parame-
ter. Note that, Sd,n(t) has losses incorporated into it till time
t− 1. It is to be noted that forecasting agent doesn’t have ac-
cess to the predictions of other forecasting experts except its
own. Hence, we assume that, there is a genie which takes the
weights assigned to the forecasting experts at each time t and
then computes the prediction of the forecasting agent n, p̂n,t
in the following manner

p̂n,t =

∑N
l=1 w

n
l,tfl,t∑N

l=1 w
n
l,t

. (11)

Moreover, due to the nature of the update for the proposed
distributed algorithm, the prediction incorporates all the past
information unlike the centralized case in (5), which makes
the analysis for the distributed case highly non-trivial. We
state another assumption pertaining to the best performing
forecasting expert before proceeding further.

Assumption A4. The cumulative loss of the best performing
forecasting expert satisfies

min
n=1,··· ,N

Ln,t = o(t) (12)

Assumption A4 ensures that the experts’ predictions are rea-
sonable. In case, when assumption A4 does not hold, the per-
formance of not only the distributed algorithm, but also that
of the centralized algorithm would be bad, i.e., the cumulative
losses would be linear in time.

4. MAIN RESULTS

In this section, we specifically characterize the regret bounds
for the proposed distributed sequence prediction algorithm.
The first result concerns with the regret bounds for a fixed
time t.

Theorem 4.1. Consider the distributed sequence prediction
algorithm in (8)-(11) under Assumptions A1-A4. For any fixed
time t and η > 0, and for all sequence of outcomes {ys}ts=1 ∈
Y the regret of the distributed exponentially weighted average
predictor satisfies

L̂n,t ≤ e
2ηNr
1−r

(
min

n=1,··· ,N
Ln,t +

lnN

η
+
tη

8
+

2ηNr

1− r

)
, (13)

where L̂n,t and r denote the loss cumulative loss of forecast-
ing agent n and ‖W − J‖ respectively.

As such we do not need Assumption A4 to establish the re-
gret bound in (13). However, Assumption A4 ensures that the
regret bound is sub-linear with respect to the best performing

expert. It is to be noted that if η is chosen as
√

8(1−r) lnN
t+2Nr ,

then the regret bound becomes

L̂n,t ≤ e
2
√

8 lnN√
(t+2Nr)(1−r)

(
min

n=1,··· ,N
Ln,t

+

√
lnN(t+ 2Nr)√

8(1− r)
+
t
√

(1− r) lnN√
8 (t+ 2Nr)

+
2
√
8 lnN√

(t+ 2Nr)(1− r)

)
.

(14)

It is readily seen that when r = 0, the regret bound reduces
to that of the one in Theorem 2.1. Moreover, it can also be
seen that limt→∞

1
t

(
L̂n,t − Ln,t

)
= 0 and that the regret

bound is a function of network connectivity in terms of r.
The next result concerns with the regret bounds that hold uni-
formly over time.

Theorem 4.2. Let the hypotheses of Theorem 4.1 hold. For
all t ≥ 1, and for all sequence of outcomes {ys}ts=1 ∈ Y the
regret of the distributed exponentially weighted average pre-
dictor with time-varying learning parameter ηt =

√
8 lnN/t

satisfies

L̂n,t ≤ e
2Nr
√

8 lnN
1−r

(
min

n=1,··· ,N
Ln,t

+

√
lnN

8
+
√
2t lnN +

2Nr
√
8 lnN

1− r

)
. (15)

As in the case of Theorem 4.1, we do not need Assumption A4
in order to establish the regret bound in (15). However, As-
sumption A4 ensures that the regret bound is sub-linear with
respect to the best performing expert. As a consistency check,
it can be verified that with r = 0, the regret bound reduces to
the bound derived in Theorem 2.2. The regret bound derived
in Theorem 4.2 is a function of the network connectivity and
the bound is smaller when the network connectivity is better.
Finally, it can also be seen that limt→∞

1
t

(
L̂n,t − Ln,t

)
= 0

which establishes that the regret is sub-linear with respect to
the best performing expert.

5. CONCLUSION

In this paper, we have proposed a consensus + innovations
type algorithm for distributed expert assisted sequence pre-
diction, in which every agent computes the weights of the
experts’ predictions by simultaneous processing of neighbor-
hood information and local newly sensed information and
where the inter-agent collaboration is restricted to a possibly
sparse communication graph. Under rather generic assump-
tions, we have established the sub-linear regret bounds for
each agent with respect to the best performing expert in the
fixed time setting and also in the case where the bounds hold
uniformly over time. A natural direction for future research
consists of establishing minimax regret for settings involv-
ing noisy information exchange in a distributed information
processing setup.
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