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Abstract
This paper focuses on the problem of distributed sequence prediction in a network of sparsely interconnected
forecasting agents, where agents collaborate to achieve provably reasonable predictive performance. An expert assisted
online learning algorithm Dist-Hedge of the consensus+innovations form is proposed, in which the agents aggregate
experts’ predictions by simultaneously processing the latest network losses (innovations) and the cumulative losses
obtained from neighboring agents (consensus). This paper characterizes the sub-linear regret of the agents’ prediction
performance with respect to the best forecasting expert in terms of network connectivity.

1. INTRODUCTION

The heterogeneity of data nowadays, in the era of big data essentially necessitates the use of algorithms which
can work without verifying assumptions on the underlying data. In addition to the heterogeneity, the enormity of
the data makes it very difficult to characterize the statistical properties of distributions so as to apply appropriate
learning algorithms and inference algorithms to achieve provably reasonable performance. In such scenarios, most
offline algorithms are ineffective as it is hard to take a single pass across the entire dataset, let alone figure out the
distribution from which the data is sampled. Algorithms which have easily verifiable underlying assumptions with
provable reasonable performance turn out to be efficient in such settings, for example, online learning algorithms.
Online learning algorithms have been specifically employed in various partial and complete information settings (see,
for example [1]-[3]).

In the context of complete information settings, online learning has been particularly effective in sequence predic-
tion (see, for example [1], [4]). To be specific, expert assisted online learning, where an online learner uses the
learning capabilities of reference learners or experts has been applied to sequence prediction a lot. In this paper,
we focus on expert assisted sequence prediction, where a forecasting agent aggregates the predictions of experts in
a systematic way based on the past performance of the experts (see, for example [5], [6]). One of the most widely
used algorithms is the Hedge algorithm and its subsequent variants such as the AdaHedge (see, for example [7],
[8]). However, in real world scenarios, it is impractical for a forecasting agent to have access to all the experts. Also,
the accessibility of the experts’ predictions to the forecasting agent might be prohibitive privacy wise. Moreover,
due to the sequential nature of the prediction task at hand, the cumulative losses of the experts accessible to the
forecasting agent might be delayed.

Motivated by the above discussion, we propose a distributed sequence prediction algorithm Dist-Hedge, of the
consensus + innovations type ([9], [10]) in a network of forecasting agents, where each forecasting agent aggregates
the predictions of the networked experts by assimilation of the latest sensed loss of its own expert and the losses
of experts in its neighborhood. The information exchange among the forecasting agents conforms to a pre-assigned
possibly sparse communication graph which makes the information sharing constrained. Due to the constrained
information sharing, each forecasting agent supplies its generated weights for the experts to a genie, which then
informs the agent of its loss. In spite of such a constrained setup, which involves delayed and inexact losses of
the experts at the agents, we establish the sub-linear regret of each forecasting agent to the network-wide best
performing expert under some mild assumptions.

Prediction with expert advice has been extensively studied (see, for example [5], [6], [11]). The usefulness of
exponential potential functions in terms of making the weighting scheme a function of just the past performance
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of the experts was first studied and also the sub-linear regret of such a scheme was first established in [4]. Sub-
linear regret bounds that hold uniformly over time for exponentially weighted average forecasting, which involve a
doubling trick was established in [12]. In [13], we established the sub-linear regret bounds for a distributed sequence
predictor. However, the regret bound in [13] also involved the loss of the best performing expert and thus needed
an additional assumption on the loss of the best performing expert to be sub-linear. In contrast to [13], we establish
sub-linear bounds without any assumptions on the performance of the experts with the regret being a function of
only the algorithm parameters, network connectivity and the number of experts.

The rest of the paper is organized as follows. Spectral graph theory, preliminaries and notation are discussed
next. The expert-assisted online learning setup is described in Section 2, where we also review some preliminaries
concerning online sequence prediction. Section 3 presents the proposed distributed sequence prediction algorithm,
while Section 4 concerns with the main results of the paper. We skip the proofs due to space limitations. The proofs
can be found in [14]. Finally, Section 5 concludes the paper.

Spectral Graph Theory. The inter-agent communication network is a simple! undirected graph G' = (V, E), where
V' denotes the set of agents or vertices with cardinality |V| = N, and E the set of edges with |E| = M. If there
exists an edge between agents ¢ and j, then (4,j) € E. A path between agents ¢ and j of length m is a sequence
(i =po,p1, - ,pm = j) of vertices, such that (p;,pi+1) € E, 0 <t < m — 1. A graph is connected if there exists
a path between all possible agent pairs. The neighborhood of an agent n is given by Q,, = {j € V|(n,j) € E}. The
degree of agent n is given by d,, = |€2,,|. The structure of the graph is represented by the symmetric N x N adjacency
matrix A = [A,;;], where A;; = 1if (i, j) € E, and 0 otherwise. The degree matrix is given by the diagonal matrix
D = diag(d; - - - dn). The graph Laplacian matrix is defined as L = D — A. The Laplacian is a positive semidefinite
matrix, hence its eigenvalues can be ordered and represented as 0 = A\;(L) < Ao(L) < --- Ay (L). Furthermore, a
graph is connected if and only if Ay(L) > 0 (see [15] for instance).

2. ONLINE LEARNING: SEQUENCE PREDICTION

In this section we discuss preliminaries about online learning with a focus on sequence prediction (see, [16] for
example). Online Learning can be typically classified into complete information and partial information settings.
Partial information settings correspond to frameworks such as multi-armed bandits [2] where at any time instant,
a decision maker does not have access to the rewards of all the learning agents, i.e., arms. Complete information
settings consist of frameworks such as sequence prediction and online convex optimization. Online sequence
prediction especially in the non-stochastic setting is applicable to fairly generic prediction scenarios as there are no
underlying assumptions on the data. Expert assisted sequence prediction involves a forecasting agent tasked with
predicting an unknown sequence {y;},_,, one at a time, where every instance of the sequence belongs to an action
space ). In order to assist the prediction, the forecasting agent has access to experts or reference forecasters, which
at every time instant aggregates the predictions of experts. The prediction of the reference forecasters, denoted as

{ fi} belongs to a decision space D which is a convex subset of a vector space. The forecasting agent computes its
prediction in an online yet sequential manner with an objective to perform reasonably close to the best performing
experts, in terms of prediction performance specified in terms of regret (to be specified shortly). At each time
t, the forecasting agent has access to predictions { fi,t}il\il from N reference forecasters or experts, which the
forecasting agent weighs based on the past performance of the experts and comes up with its prediction p; and
then the true outcome y; is revealed. The prediction performance of the forecaster and the experts are evaluated
using a non-negative loss function [ : D x ) — R. We formalize some assumptions on the loss function (-, -) and
the decision space D before proceeding further.

Assumption Al. The loss function | : D x Y — R is convex in its first argument and it takes values in [0, 1].

The boundedness of the loss function to [0, 1] is just for the sake of brevity. The results of this paper can be easily
extended to different bounds on the loss functions. Also, in case of unbounded loss functions the loss can be clipped
to a finite pre-determined level and the framework developed in this paper would still be applicable.

Assumption A2. The decision space D is a convex subset of a vector space.

The objective of the forecaster is to ensure that the cumulative regret with respect to each reference forecaster is as
low as possible. To be specific, the forecaster aims to achieve sub-linear regret with respect to the best performing

expert. Formally, the regret with respect to expert n is defined as R,, , = 22:1 (1 (Ps,ys) — U [fn,s,¥s)) = L —Ly,4,

A graph is said to be simple if it is devoid of self loops and multiple edges.



where Ly = S0 1(ps,ys) and Ly = 3., 1 (fn,s,ys) Which denote the cumulative loss of the forecaster and the
expert n at time ¢ respectively. Formally, the objective of the forecaster can be specified as follows:

max Ry, : = o(t),or, equivalently tlim % (]:t — Lmt) =0, 1)
— o0

n=1,---,

where the convergence is desired to be uniform across all sequence of outcomes. The aggregation of the predictions
of the different experts is implemented by the following procedure:

~ 27]:]:1 wn,t—lfn,t
D=2y @)
Zn:1 Wn,t—1

where w,, ;1 is the weight associated with the n-th expert’s prediction at time ¢. It is to be noted that the prediction
Pt € D as it is a convex combination of the experts’ predictions. The weight assigned to the experts is a function of
their past performance, which in turn is a potential function such as polynomial function or exponential function.
Moreover, as the sequence prediction procedure is an online sequential task, the cumulative losses of the experts
available to the agent for predicting the outcome at time ¢ is till time ¢t — 1. Hence, the weight assigned to expert
n at time ¢ is proportional to the regret of the forecaster to expert n at time ¢t — 1. For the rest of the paper, we
specifically consider the exponential potential function for assigning we}\ghts to the experts, in which, the weights

for the prediction at time ¢ are computed as wy, ;1 = exp(nRp¢—1)/ > ,—1 €Xp(nRn+—1), Where 7 is positive and
referred to as the learning parameter. Then, the prediction of the forecaster at time ¢ is given by,

. ETJ:I: 6*77Ln,t71fn,t
S AP
The algorithm above which involves weighting the losses of the experts using an exponential potential function
is known as the Hedge algorithm or the exponentially weighted average algorithm. It is interesting that with
exponentially weighted average, the prediction depends just on the past performance of the experts and not
specifically on the past predictions {p, } s<;. Under rather weak assumptions on the loss functions and decision space,
i.e., assumptions A1-A2, sub-linear regret has been established for exponentially weighted average prediction (see
Theorems 2.2 and 2.3 in [16]). However, in most practical applications of interest, the forecasting agent experiences
delays in getting the latest losses of the experts. Formally, consider a scenario, where a forecasting agent has access
to the cumulative loss function of expert i, with a delay d; i.e., at time ¢ the forecasting agent has access to
L; 1—q,. Technically speaking, the normalized weight assigned by the forecaster to expert ¢ at time ¢ is given by,
Wi = exp (_77Li,t 0 )/ 2;\;1 exp (—nLj,t di). To keep things consistent, we further assume that the forecaster only
generates weights for the different experts and a genie takes those weights and informs the forecaster about the loss
it suffered at every time instant. By the aforementioned assumption, we ensure that the forecaster does not have
access to latest predictions from the experts and thus does not have access to the latest loss function of the experts.
We study the regret of the delayed Hedge algorithm for a fixed horizon setting. The following result characterizes
the regret bound for a fixed time horizon ¢ for the delayed Hedge algorithm.

3

Theorem 2.1. Let Assumptions Al-A2 hold. Consider the exponentially weighted average predictor as discussed in
(3) with delayed losses. For any fixed time T > dpqq, Vi =1,--- N and n > 0, and for all sequence of outcomes
{ys}i:1 € Y the regret of the delayed Hedge satisfies

ET — min Ln,T S M + ndmazT + ﬂ? (4)
n=1,-,N n 8

where dpax = maxi-i,... v di. In particular, if 1 is chosen as 1 = \/ 71y, then the RHS in (4) reduces to

T1In N(8dmaxz+1)
Y e——

Proof: In order to analyze, the delayed expert assisted prediction algorithm we take the aid of a fictitious
sequence prediction algorithm where there are no delays involved. Let W; denote the sum of unnormalized weights
assigned to the experts at time ¢ by the forecaster for the fictitious sequence prediction algorithm with no delays
and thus is given by,

N
W, = Zexp (—mLiz) . (5)
i=1



At time ¢t = 0, the forecaster assigns weights as % to all the experts. Then, we have,

W N
In | =L} =1 —nL; —InN
n<Wo) n(iz_;exp( 7 T)) n

>1In (4_rlnaxN exp (—nLZ-,T)> —InN

> — i .7 —InN.

> nlzrlmnN Li7—InN (6)
We note that,

Wiy —Wis1 =W (exp(—nliz) — 1)

> Wi i—1lis

d

=> Wit —Wii—a, > —0 Wit—slit—st1- @)

s=1

With the above lower bound established, we bound the quantity In (%) from above in the sequel. We have,

Wi _ Zzlil Wi 1—1exp (—nli,t)
In =In -
Wi i Wi

< —772?[:1 Wit—1lit . ﬁj
Zi]il Wi 8

N d 2
n
<Y wipalis+0° Y Wirslii-s+ o
i=1 s=1

8
7?2
< —nl (Pe, ) + dn® + e ®)
Now, summing the above established inequality from ¢ = 0 to ¢t = T, we have,
Wr 7 2 ’72
In{— | <—-nL Td T—. 9
n <W0> < —nLp+Tdn” + g &)

Combining the above upper bound with the lower bound obtained in (7), we have,
2
-7 _711ninN Li7 —InN < —nLp + Tdn? + T%

) In N
= Lr— min L,y < — +ndl + 2. (10)

n=1,--- N n 8

In particular, if the RHS in (10) is minimized with respect to 7 it can be seen that the optimal choice of 7 is given
by 7 = \/ 752525, then the RHS in (10) reduces to y/ TN EEEL,
|

Keeping practical applications in mind, the access to predictions of all experts might have privacy concerns and it
might not be possible for a forecaster to track all the losses of the experts. For example, for predicting stock prices
in a stock exchange, a forecaster might have access only to a few experts in their proximal trust neighborhood
and would only want to exchange losses and not the predictions. Even when a forecasting agent is able to track
the losses of all the experts, due to the inherent sequential nature of the task at the hand, the cumulative losses
of the experts accessible to the agent might be delayed. Motivated by such practical application scenarios, where
the information exchange in a multi-agent network setting is constrained to an agent’s neighborhood, we propose
a Dist-Hedge algorithm which is of the consensus + innovations type, where every forecasting agent incorporates
the information obtained from the neighbors and the latest sensed information simultaneously.



3. DISTRIBUTED SEQUENCE PREDICTION

In this section, we introduce and develop the Dist-Hedge algorithm. The setup consists of /N forecasting agents
and N experts in a network, in which each expert n can only be accessed by forecasting agent n. Each agent n, at
each time ¢ gets access to the instantaneous loss of its own expert and that of the other experts in its neighborhood.
To be specific, each agent n tries to track the network cumulative losses of all experts by maintaining a surrogate
loss vector S, (t) € RY of the experts which is updated in a constrained manner as follows:

Sin(t+1) = wenSan(t) + Z WS4, (%)
e,

neighborhood consensus

+ WanLan(t) + Y waLa(t), (11

1€eQ,

innovation

where Lg . (t) € RY, Q,, and wy,’s denote the vector of losses at forecasting agent n, the neighborhood of agent

n and the weight of the link from the agent n to agent [ in the inter-agent communication graph respectively. As
forecasting agent n has access only to the loss of its own expert, Ly, (¢) has all its entries to be zero except the
n-th entry. The exchange of losses is limited to a pre-specified possibly sparse inter-agent communication graph
which introduces implicit delays in the approximate losses of the experts that are not in an agent’s neighborhood.
In essence, the maximum delay of a forecasting agent with respect to an expert in the network is given by the
diameter of the graph. The communication graph can be abstracted as a non-negative, symmetric, irreducible and
stochastic matrix W by designing the weights as W = I — §L., where L is the graph Laplacian. The quantity r
given by, r = ||[W — J||, where J = %1 ~1j corresponds to the information flow in the network. For example,
r = 0 corresponds to the completely connected setting, while » = 1 corresponds to the setting where each agent is
by itself?. The choice of ¢ is taken to be 2/ (A2 (L) + An (L)) (see [18]). We state an assumption on the inter-agent
communication graph before proceeding further.

Assumption A3. The inter-agent communication network modeling the information exchange among the forecasting
agents is connected, i.e., Ay (L) > 0, where L denotes the associated graph Laplacian matrix.
The weight for the forecasting expert [ at forecasting agent n at time ¢, w;’, is computed as follows:

b

N
T T
—e NnSg n(t —e) NnSg n(t
wt, = e S N7 d.n()/E :e em NN cz,n()7 (12)
m=1

where 7) is positive and referred to as the learning parameter. It is to be noted that S, ,,(¢) has losses incorporated
into it till time ¢ — 1. To keep things consistent, we further assume that each forecasting agent only generates
weights for the different experts and a genie takes those weights and then computes the prediction as

N N
Pt =D wiefie/ ( w&) : (13)
=1

=1

which then can be accessed by the forecasting agent. Moreover, due to the nature of the update for the proposed

distributed algorithm, the prediction incorporates all the past information unlike the centralized case in (3), which
makes the analysis for the distributed case highly non-trivial. The key observation which aids us in establishing the
sub-linear regret of the proposed Dist-Hedge algorithm is given by,

—enexp (en) Wiy < Wiy — WE, < enWiy, (14)

where ¢ = NvV/Nr/ (1 —r) and W; ., Wk, represent the unnormalized weights assigned by a hypothetical centralized
and distributed forecasting agent k at time instant ¢ to the expert ¢ respectively.

4. MAIN RESULTS

In this section, we specifically characterize the regret bounds for the proposed Dist-Hedge algorithm. The first
result concerns with the regret bounds for a fixed time horizon ¢.

2The second largest eigenvalue in magnitude of W, denoted by r, is strictly less than one (see [17]). Moreover, by the stochasticity of W,
the quantity r satisfies r = ||W — J||, where J = %11\;1}



Theorem 4.1. Consider the Dist-Hedge in (11)-(13) under Assumptions Al-A3. For any fixed time t and n > 0,
and for all sequence of outcomes {ys}’;zl € Y the regret of the n-th agent for the Dist-Hedge algorithm satisfies

Ly, — min Let<M+tﬁ+2tﬁN\FT s
’ e=1,--- n 8 1—r

where L%, and r denote the loss cumulative loss of forecasting agent n and |W — J|| respectively.

Proof: A fictitious centralized agent updates its loss functions in the following way:

Se(t) = (In®J)(Sc(t—1)+L(¥)). (16)
Also, the update for the surrogate network losses of the experts can be written in the following way:
Sat) = (Iy ® W) (Sa(t — 1) + L(2)). a7)

We first bound the network losses for the i-th expert for the k-th agent in the distributed and the centralized setups.
Note, that all agents in the centralized network are identical. Denote by S 51 the tracked surrogate loss for the ¢-th
expert by the k-th agent. Then, we have,

o8 ty4: (Selt) = Sa(t))

t
< X Jefnyes Oy o (W = 31|

VN
< t+1— s<
fZT =

r\/‘7 VN
1—-r “1l-r

Next, we bound the unnormalized weights assigned to the i-th expert by the k-th agent in the distributed setup and
its centralized counterpart at time t. We have,

W s(t) — WE,(t) = e NnSes() _ o=Nush(©

> ¢~ NnSh.L®) (eXp (W) _ 1)
- T

_ank L) TNV INT 77N\/7’I“

< 8pit) = Sg(t) <

(18)

>e

1—r
> e~ NnSei(t) exp WN\FT nN\/Nr
> - T
N NV N

= —Wei(t) exp <77 fr) 1 \FT. (19)

’ 1—r 1—r

Similarly, we have,

WC l( ) Wd z( ) _NnSC i(t) _NWSS,T:(t)
< e_NnSC"i(t) ]_ — exp M
B 1—r
NVN NVN
nlif?ew"w” = %\/?Wc,i(t). 0)

Let W, denote the sum of unnormalized weights assigned to the experts at time ¢ by the forecaster for the fictitious
sequence prediction algorithm with no delays and thus is given by,

N
Wi => exp(—nLiy). 1)
=1
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N

In (I;//T) =In (g: exp(—nLi,T)> ~InN

0 i—1

At time ¢t = 0, the forecaster assigns weights as +- to all the experts. Then, we have,

> In (4_rlnaxN exp (_nLi,T)> —InN

) )

> — in L;7—InN. 22
= —n, o Lir—In (22)

With the above lower bound established, we bound the quantity In (WVYL) from above in the sequel. We have,

We )\ _ Sy Weit — 1) exp (—nli)
8 (th) - ( Zi\[ﬂ Wei(t —1) >

— Zivzl We,i(t — 1)l + n?

Zij\il Wc,i(t - 1) 8

r N
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< < .
1+ nNT\/FT exp (WNT\/FT) 2ic1 de,i(t —-1) 8
o T W=Dl o NV S Wit = Dl o
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o T WEE - Dlie NN
_ n m
Zi]\il Wc]f,i(t— 1) L—r 8
) NV Nr 2
< =l (ri v1) + 20 + T 23)
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Combining the bounds derived in (22) and (23), by summing over the bound derived in (23) fromt =0to t =T,
we have,

InN tn 2tnNv/Nr

L — min L., < — 4+ — 24
k,t e=1, N et > n + 8 + 1_r ( )
|
The extra term % in (15) is due to the constrained information exchange in the networked setting for Dist-
Hedge. It is to be noted that if n is chosen as ,/ m%’ then the regret bound becomes
A In N 16NV N
B4, — min Lo, < tmN (16 VT (25)
’ e=1,-- ,N 2 1—r

It is readily seen that when r = 0, the regret bound reduces to that of the classical centralized (or, equivalently, the
complete inter-agent communication graph in our formulation) case obtained in Theorem 2.2 in [16]. Moreover, it
can also be seen that lim; o + (ﬁ;‘w — mine=1,... .~ Le,t ) = 0 and thus the regret of a forecasting agent with respect
to any expert is o(t). On comparison of the regret of the Dist-Hedge with that of the regret of the delayed Hedge
algorithm, running the delayed Hedge algorithm with the maximum delay as dmq.. = 2NV Nr/ (1 — ) results in
the same regret upper bound for both the algorithms. The next result concerns with the regret bounds that hold
uniformly over time.

Theorem 4.2. Let the hypotheses of Theorem 4.1 hold. For all t > 1, and for all sequence of outcomes {ys}iz1 (SN%
8(1—r)In N
t(1—r)+16tNVNr

L, - min  Ley < \/tlnN (1 + M) (26)

the regret of the n-th agent for the Dist-Hedge algorithm with time-varying learning parameter
satisfies




Proof. We set the learning rate as 7, = \/E Following as in the last proof, we have that,
— In(Wr) — — ln (Wy) > —n min Lz T. 27
nr Mo =1,

We now study the evolution of % In (W) — ﬁ In (W;_1). Then, we have,
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Now summing, the upper bound from ¢ = 1 to ¢t = T, we have,
1 1 R ¢ 1+ 16@
—In(W;) — —In(Wp) < —L¢, + \flnzv + (” Vat. (29)
ur 70 ’ a 4
Combining the upper bounds and lower bounds in (27) and (29), we have,
. 1 + 16N\/ﬁr
L¢, — min L., < \/? InN + (“ Vat. (30)
’ e=1,--- ,N ’ a 4
Optimizing the right hand side above, we find the optimal value of a to be a = % Finally, applying
— /_4WNO-r) o have
e =\ {a=r+16NVNr)’ ’
. 16NV N
4, — min L., < tlnN(l—kT). G1)
’ e=1,--,N ' 1—7r
O

As a consistency check, it can be verified that with » = 0, the regret bound for the Dist-Hedge reduces to that of
the regret bound for the complete information setting derived in Theorem 2.3 in [16]. Finally, it can also be seen
that lim; o0 7 (ﬁ‘fm — Mine=1,.. N Le,t) = 0 which establishes that the regret is sub-linear with respect to the best
performing expert. The regret bounds derived in Theorems 4.1 and 4.2 are a function of the rate of information
exchange in the network and the regret is subsequently lower for networks where r is smaller.



5. CONCLUSION

In this paper, we have proposed a consensus + innovations based Dist-Hedge algorithm for distributed expert
assisted sequence prediction, where each agent generates the weights for the experts to come up with its prediction
by simultaneous processing of losses of experts in the neighborhood and local newly sensed losses and where the
sharing of the experts’ losses is restricted to a possibly sparse inter-agent communication graph. Under convexity
of the loss function in its first argument and without any assumptions on the data, we have established sub-linear
regret bounds for each agent with respect to the best performing expert in the fixed horizon and infinite horizon
settings. A natural direction for future research consists of establishing sub-linear regrets where the agents adhere
to a communication budget which forbids the exchange of information among (directly connected) agents at all
times.
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