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Abstract—This paper focuses on the problem of distributed
composite hypothesis testing in a noisy network of sparsely inter-
connected agents in which a pair of agents exchange information
over an additive noise channel. The network objective is to test a
simple null hypothesis against a composite alternative concerning
the state of the field, modeled as a vector of (continuous) unknown
parameters determining the parametric family of probability
measures induced on the agents’ observation spaces under the
hypotheses. A recursive generalized likelihood ratio test (GLRT)
type algorithm in a distributed setup of the consensus+innovations
form is proposed, in which the agents update their parameter
estimates and decision statistics by simultaneously processing the
latest sensed information (innovations) and information obtained
from neighboring agents (consensus). This paper characterizes
the conditions and the testing algorithm design parameters which
ensure that the probabilities of decision errors decay to zero
asymptotically in the large sample limit.

1. INTRODUCTION

This paper focuses on the problem of distributed composite
hypothesis testing in multi-agent networks where the objective
is not only to estimate the state (possibly high dimensional)
of the environment but also detect as to which hypothesis
is in force based on the all the measurement data at all
the agents, where both the estimation and detection schemes
run in parallel. In particular, we focus on distributed multi-
agent networks where the communication and information
exchange between the agents is over additive noise channels
and limited to a pre-assigned, possibly sparse, communication
graph. This problem is relevant to practical applications such
as cooperative spectrum sensing and MIMO radars. Gen-
eralized Likelihood Ratio Test (GLRT) ([1]) is a classical
approach and has garnered a lot of interest in centralized
setups for addressing problems of composite testing. Not only
is GLRT an offline1 batch processing algorithm, but also
involves an inherent waiting time as the detection procedure
which uses the optimal underlying parameter estimate as
a plug-in estimate cannot start until a reasonably accurate
estimate typically the maximum likelihood estimate of the
underlying parameter (state) is obtained. Moreover, in order
to achieve a reasonable detection performance, more sensing
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1By offline, we strictly refer to the classical implementation of the GLRT.
Various recursive versions of GLRT type approaches catering to problems
like sequential composite hypothesis testing and change detection (see, for
example, [2], [3]), although in centralized processing scenarios have been
developed.

is needed. In most multi-agent networked scenarios, which
are typically energy constrained, the priority is to obtain
reasonable inference performance by expending fewer amount
of resources. Motivated by requirements such as the latter,
we propose an algorithm CIGLRT , where the inter-agent
collaboration is over noisy channels and is restricted to a
pre-assigned possibly sparse communication graph and the
detection and estimation schemes run in a parallel fashion
with a view to reduce energy and resource consumption while
achieving reasonable detection performance.

We briefly review the related existing work in the literature
on distributed hypothesis testing in multi-agent networks be-
fore discussing the problem setup and our algorithm. Existing
distributed detection schemes in literature can be broadly clas-
sified into three classes. The first class includes architectures
characterized by the presence of a fusion center where the
fusion center receives the decisions or local measurements or
test statistic or its quantized version from all the agents (see,
for example [4], [5]) and subsequently conducts the estimation
and detection schemes. The second class consists of consensus
schemes (see, for example [6], [7]) with no fusion center
and where, in the first phase the agents collect information
for a long period of time from the environment followed by
the second phase, where agents exchange information in their
respective neighborhoods to arrive at a decision collectively.
The third class consists of schemes which perform simulta-
neous assimilation of information obtained from sensing and
communication (see, for example [8]–[10]).

The algorithm we present in this paper belongs to the
third class, where agents make conditionally independent and
temporally identically distributed (but possibly spatially het-
erogeneous) observations and update their parameter estimate
and test statistic by simultaneous assimilation of the (noisy)
information obtained from the neighboring agents (consen-
sus) and the latest locally sensed information (innovation).
This justifies the name CIGLRT which is a distributed
GLRT type algorithm of the consensus + innovations form.
Consensus + innovations generalizes stochastic approximation
to distributed multi-agent networked scenarios. Technically
speaking, consensus + innovations algorithms may be viewed
as mixed time scale stochastic approximation procedures.
By mixed time scale, we mean stochastic approximation
algorithms where two potentials influence the update step
through different gain sequences. It is to be noted that the
above notion of mixed time scale is different from stochastic



algorithms with coupling (see [11]), where a quickly switching
parameter influences the relatively slower dynamics of another
state, leading to averaged dynamics. In this paper, so as
to closely replicate typical practical sensing environments,
we assume an agent’s observations, say for agent n, is Mn

dimensional, where Mn << M , M being the dimension of
the underlying static vector parameter. In addition to the local
non-observability, in order to replicate typical communication
environments, we assume that the communication between
agents is noisy, i.e., the agents’ communicate over additive
noise channels. Under a global identifiability condition and
connectivity of the inter-agent communication network, we not
only show the consistency of the parameter estimate sequence
but also show the existence of feasible choice of thresholds
and other algorithm design parameters which ensure that the
probabilities of errors decay to zero asymptotically. (Fully)
distributed detection schemes, in prior literature are mostly
concerned with either binary simple hypothesis testing (see, for
example [8], [9], [12]) or multiple simple hypothesis testing
(finite classification) (see, for example [13], [14]) in contrast
with the composite hypotheses with constant vector parameter-
ization which can take values in a continuous space is studied
in this paper. Recently, [15], [16] considered the problem
of distributed composite hypothesis testing in ideal commu-
nication scenarios, i.e., noiseless communication. Distributed
detection problems based on the consensus+innovations ap-
proach in the noisy communication setting has been addressed
in [9]. In this paper, our analysis contributes to understanding
large deviations of mixed time scale stochastic approximation
processes in addition to the characterization of the decision
statistic and the parameter estimate sequences that evolve in
a closed loop fashion. Addressing the fully composite testing
setup with a continuous range of alternatives requires novel
technical machinery in the form of development of analysis of
efficient distributed estimation and detection procedures that
interact in a closed loop fashion in a noisy communication
scenario, which we pursue in this paper. The rest of the paper is
organized as follows. Spectral graph theory, preliminaries and
notation are discussed next. The sensing model is described in
Section 2, where we also review some preliminaries concern-
ing the classical Generalized Likelihood Ratio Tests. Section
3 presents the proposed CIGLRT algorithm, while Section 4
concerns with the main results of the paper. Finally, Section
5 concludes the paper.
Spectral Graph Theory. The inter-agent communication net-
work is a simple2 undirected graph G = (V,E), where V
denotes the set of agents or vertices with cardinality |V | = N ,
and E the set of edges with |E| = M . If there exists an edge
between agents i and j, then (i, j) ∈ E. A path between agents
i and j of length m is a sequence (i = p0, p1, · · · , pm = j)
of vertices, such that (pt, pt+1) ∈ E, 0 ≤ t ≤ m − 1. A
graph is connected if there exists a path between all possible
agent pairs. The neighborhood of an agent n is given by
Ωn = {j ∈ V |(n, j) ∈ E}. The degree of agent n is given
by dn = |Ωn|. The structure of the graph is represented by

2A graph is said to be simple if it is devoid of self loops and multiple
edges.

the symmetric N × N adjacency matrix A = [Aij ], where
Aij = 1 if (i, j) ∈ E, and 0 otherwise. The degree matrix is
given by the diagonal matrix D = diag(d1 · · · dN ). The graph
Laplacian matrix is defined as L = D−A. The Laplacian is
a positive semidefinite matrix, hence its eigenvalues can be
ordered and represented as 0 = λ1(L) ≤ λ2(L) ≤ · · ·λN (L).
Furthermore, a graph is connected if and only if λ2(L) > 0.

2. SENSING MODEL AND PRELIMINARIES
There are N agents deployed in the network. Every agent
n at time index t makes a noisy observation yn(t), a noisy
nonlinear function of θ∗ which is a M -dimensional parameter,
i.e., θ∗ ∈ RM , which comes from a probability distribution
P0 under the hypothesis H0, whereas, under the composite
alternative H1, the observation is sampled from a probability
distribution which is a member of a parametric family {Pθ∗}.
Formally,

H1 : yn(t) = hn(θ∗) + γn(t)

H0 : yn(t) = γn(t). (1)

where hn(.) is, in general, non-linear function, {yn(t)} is a
RMn -valued observation sequence for the n-th agent, where
typically Mn � M and {γn(t)} is a zero-mean temporally
independent and identically distributed (i.i.d.) Gaussian noise
sequence at the n-th agent with nonsingular covariance matrix
Σn, where Σn ∈ RMn×Mn . Moreover, the noise sequences at
two agents n, l with n 6= l are independent. We emphasize
here that the parameter θ∗ is deterministic but unknown.
By taking hn(0) = 0, ∀n and certain other identifiability and
regularity conditions outlined below, in the above formulation
the null hypothesis corresponds to θ∗ = 0 and the composite
alternative to the case θ∗ 6= 0. Note that the formulation
assumes no indifference zone. However, the performance
of the proposed distributed approach in terms of the error
probabilities under the composite alternative will depend on
the specific instance of θ∗ in force. We start by making some
identifiability assumptions on our sensing model before stating
the algorithm.

Assumption A1. The sensing model is globally observable,
i.e., any two distinct values of θ and θ∗ in the parameter space
RM satisfy

∑N
n=1 ‖hn(θ)− hn(θ∗)‖2 = 0 if and only if θ =

θ∗.

For instance, if the sensing functions are taken to be linear, i.e.,
the observation model in (1) reduces to yn(t) = Hnθ

∗ + γn(t)

and the condition in assumption A1 reduces to the condi-
tion that

∑N
n=1 H>nHn is invertible. It is to be noted that a

distributed collaborative testing is necessary in general as in
the setup under consideration, the local observation models
at each agent is not observable for θ∗. In order to motivate
our distributed testing approach (presented in Section 3), we
now review some concepts from Generalized Likelihood Ratio
Testing.

Consider a generalized target detection problem, where the
absence of target is modeled by a simple hypothesis H0,
whereas the alternative H1 which is a composite hypothesis
models the presence of a target as the underlying parameter
θ∗ is unknown and can possibly attain a range of values.
The agents in the network collect data over time and let
y(t) =

[
y1(t)> · · ·yN (t)>

]> represent the data from all the
agents at time t, where y(t) ∈ R

∑N
n=1Mn . The fusion center in



a centralized setup has access to all the agents’ observations
i.e. y(t) at all times t. In a centralized setup, a classical testing
approach is the generalized likelihood ratio test (GLRT).
Formally, the GLRT decision rule is defined as follows:

H =

{
H1, if maxθ

∑T
t=0 log fθ(y(t))

f0(y(t)
> η,

H0, otherwise,
(2)

where η is a predefined threshold and with the assumption
that the observations made by the agents are conditionally
independent, we have, f0(y(t)) = f1

0 (y1(t)) · · · fN0 (yN (t)) and
fθ(y(t)) = f1

θ (y1(t)) · · · fNθ (yN (t)), which represent the likeli-
hood of observing y(t) under H0 and H1 respectively, where
fn0 (yn(t)) and fnθ (yn(t)) represent the likelihood of observing
yn(t) at agent n under H0 and H1 with θ as the underlying
parameter respectively. Hence, the maximization in (2) can be
written as

max
θ

T∑
t=0

log
fθ(y(t))

f0(y(t))
= max

θ

T∑
t=0

N∑
n=1

log
fnθ (yn(t))

fn0 (yn(t))
. (3)

The key bottleneck in the implementation of the classical
GLRT is the computation of the decision statistic in the
maximization in (3) as it needs access to all the data collected
so far. In general, as the maximizer of (3) depends on the
raw data instance, it is not known apriori. Hence as far as
communication complexity in the GLRT implementation is
concerned, the maximization step incurs the major overhead -
in fact, a direct implementation of the maximization (3)
requires access to the entire raw data y at the fusion center.
We assume that the inter-agent communication is imperfect,
i.e., noisy. To be specific, we assume that an agent pair (i, j)
exchange information over a vector additive zero-mean noise
channel. Formally speaking, if agent i transmits a data vector
z ∈ Rk to agent j, the information received at agent j is
given by z̃ = z+ψi,j , where the noise vector ψi,j is Gaussian
with zero mean and has finite variance Σij . Furthermore, we
assume the transmission channel noises are independent over
transmissions and across the graph links.
To mitigate the communication complexity in realizing a
fusion center having access to all the data, we present a
distributed algorithm in which agents collaborate locally to
obtain a maximizing θ. In order to obtain reasonable decision
performance with such localized communication, we propose a
distributed detector of the consensus+innovations type, which
have been introduced in [17]. In particular, each agent sequen-
tially updates its parameter estimate and decision statistic in
two parallelly running recursive schemes by assimilating the
information obtained from its neighbors (consensus potential)
and latest sensed local information (innovation potential).

3. CIGLRT : ALGORITHM

In this section, we develop the algorithm CIGLRT which is
an extension of the variant proposed in [15]. To be specific,
the algorithm proposed in this paper is built around a setup
where the inter-agent communication is noisy.
We skip the proofs due to space limitations. The proofs can
be found in the longer manuscript ([18]).
We propose a distributed detector of the consen-
sus+innovations form for the scenario outlined in (1).

Before discussing the details of our algorithm, we state an
assumption on the inter-agent communication graph.

Assumption A2. The inter-agent communication graph is
connected, i.e., λ2(L) > 0, where L denotes the associated
graph Laplacian matrix.

Algorithm CIGLRT
The algorithm CIGLRT consists of three interactive recursive
processes running in parallel, namely, the parameter estimate
update process, the decision statistic update process and a
decision formation rule, as described below.
We state an assumption on the sensing functions, before
describing the algorithm.

Assumption A3. For each agent n, ∀θ 6= θ1, the sensing func-
tions hn are continuously differentiable on RM and Lipschitz
continuous with constants kn > 0, i.e.,

‖hn (θ)− hn (θ1)‖ ≤ kn ‖θ − θ1‖ . (4)

Before proceeding further, we state an assumption on the
sensing functions in addition to the state-dependent innovation
gains which guarantees the existence of Lyapunov functions,
which in turn ensures the convergence of the distributed
estimation procedure.

Assumption A4. The following aggregate strict monotonicity
condition holds: there exists a constant c∗ > 0 such that for
each pair of θ and θ́ with θ 6= θ́ we have that

N∑
n=1

(
θ − θ́

)>
(∇hn (θ)) Σ−1

n

(
hn (θ)− hn

(
θ́
))

≥ c∗
∥∥∥θ − θ́∥∥∥2

. (5)

Parameter Estimate Update. The algorithm CIGLRT gen-
erates the sequence {θn(t)} ∈ RM at the n-th agent according
to the following recursive scheme

θn(t+ 1) = θn(t)− bαt
∑
l∈Ωn

(θn(t)− θl(t)− ψn,l(t))︸ ︷︷ ︸
neighborhood consensus

+ αt∇hn (θn(t)) Σ−1
n (yn(t)− hn (θn(t)))︸ ︷︷ ︸

local innovation

, (6)

where Ωn denotes the communication neighborhood of agent
n, b is a positive constant, ψn,l(t) is the communication noise
in the link between n and l, ∇hn (.) denotes the gradient of
hn, which is a matrix of dimension M×Mn, with the (i, j)-th
entry given by

∂[hn(θn(t))]j
∂[θn(t)]i

and {αt} is the innovation weight
sequence (to be specified shortly). Note that, in (6), each agent
l ∈ Ωn intends to send it’s exact estimate to agent n, but
agent n receives a noisy version of estimates from agents in its
neighborhood as the inter-agent communication is over noisy
links. The update in (6) can be written in a compact manner
as follows:

θ(t+ 1) = θ(t)− bαt (L⊗ IM ) θ(t)

+ αtG(θ(t))Σ−1 (y(t)− h (θ(t))) + bαtΨ(t), (7)

where θ(t)> = [θ1(t)> · · · θN (t)>], h(θ(t)) =[
h>1 (θ1(t)) · · ·h>N (θN (t))

]>
, y(t)> = [y1(t)> · · · yN (t)>]>,

G (θ(t)) = diag [∇h1 (θ1(t)) , · · · ,∇hN (θN (t))],
Σ = diag [Σ1, · · · ,ΣN ] and



Ψ>(t) =

[(∑
l∈Ω1

ψ1,l(t)
)>
· · ·
(∑

l∈ΩN
ψN,l(t)

)>]>
.

We make the following assumption on the weight sequence
{αt}.

Assumption A5. The weight sequence {αt} is of the form
αt = (t + 1)−1 and the positive constant b is such that b <

1
λN (L) .

Decision Statistic Update. The algorithm CIGLRT gener-
ates the decision statistic sequence {zn(t)} at the n-th agent
according to the distributed recursive scheme

zn(t+ 1) = zn(t)− bαt
∑
l∈Ωn

(zn(t)− zl(t)− ζn,l(t))︸ ︷︷ ︸
consensus

+ αt

(
log

fθn(t)(yn(t))

f0(yn(t))
− zn(t)

)
︸ ︷︷ ︸

innovation

, (8)

where ζn,l(t) is the communication noise in the link between
n and l, fθ(.) and f0(.) represent the likelihoods under H1 and
H0 respectively and log

fθn(t)(yn(t))

f0(yn(t))
= h>n (θn(t))Σ−1n yn(t)−

h>n (θn(t))Σ
−1
n hn(θn(t))
2 . Note that, in (8), each agent l ∈ Ωn

intends to send it’s exact test statistic to agent n, but agent
n receives a noisy version of test statistics from agents in its
neighborhood as the inter-agent communication is over noisy
links.
Decision Rule.
The following decision rule is adopted at all times t at all
agents n :

Hn(t) =

{
H0 zn(t) ≤ η
H1 zn(t) > η,

(9)

where Hn(t) represents the local decision at agent n at time
t. Under the aegis of such a decision rule, the associated
probabilities of errors are as follows:

PM,θ∗(t) = P1,θ∗ (zn(t) ≤ η) , PFA(t) = P0 (zn(t) > η) , (10)

where P0(.) and P1,θ(.) denote the probability of the event
conditioned on the null hypothesis H0 and H1, where θ
is the parametric alternative and PM,θ∗ and PFA refer to
probability of miss and probability of false alarm respectively.
Since, the sources of randomness in our formulation are the
observations yn(t)’s made by the agents in the network,
the communication noises Ψ(t) and ζ(t) encountered for
exchange of parameter estimates and decision statistics respec-
tively, we define the natural filtration {Ft} generated by the
random observations and the communication noise, i.e., Ft =
σ
(
{Ψ(s), ζ(s), {yn(s)}Nn=1}t−1s=0

)
, which is the sequence of

σ-algebras induced by the observation processes, in order to
model the overall available network information at all times.
Finally, a stochastic process {x(t)} is said to be {Ft}-adapted
if the σ-algebra σ (x(t)) is a subset of Ft at each t.

4. CIGLRT : MAIN RESULTS

In this section, we specifically characterize the thresholds for
which the probability of miss and probability of false alarm
decay to zero asymptotically.

We first state the main result concerning the parameter esti-
mate sequences {θn(t)}.
Theorem 4.1. Consider the CIGLRT algorithm under As-
sumptions A1-A5, and the sequence {θ(t)}t≥0 generated ac-
cording to (6). We then have

Pθ∗
(

lim
t→∞

(t+ 1)τ ‖θn(t)− θ∗‖ = 0, ∀1 ≤ n ≤ N
)

= 1, (11)

where τ ∈ [0, 1/2).

Proof. The proof follows exactly from the proof of Theorem
4.1 in [15].

We define the following quantities which will be crucial for
stating the next theorem : let Σ∗c,1 and Σ∗c,0 be given by

Σ∗c,1 = VLM1V
>
L , Σ∗c,0 = VLM0V

>
L (12)

respectively, where M1 and M0 are given by

[Ml]ij =
[
V>LΣ∗lVL

]
ij

(b [DL]ii + b [DL]jj + 1)−1, l = 0, 1,

(13)

where [A]ij denotes the (i, j)-th entry of a matrix A and Σ∗1
and Σ∗0 are given by

Σ∗1 = h∗(1N ⊗ θ∗)Σ−1(h∗(1N ⊗ θ∗))> + b2Σc,Σ
∗
0 = b2Σc,

(14)

respectively, whereas VL and DL represent the matrix of
eigenvectors and eigenvalues of L respectively, i.e., L =
V>LDLVL, and Σc denotes the covariance matrix of the
channel noise encountered in the test statistic exchange among
agents given by the process {ζ(t)}.
Theorem 4.2. Consider the CIGLRT algorithm under As-
sumptions A1-A5, and the sequence {z(t)} generated accord-
ing to (8). We then have under Pθ∗

√
t+ 1

(
z(t)− (bL + I)−1 h∗(1N ⊗ θ∗)Σ−1h(1N ⊗ θ∗)

2

)
D

=⇒ N
(
0,Σ∗c,1

)
(15)

∀n, and under P0

√
t+ 1 (z(t))

D
=⇒ N

(
0,Σ∗c,0

)
, ∀n, (16)

where D
=⇒ denotes convergence in distribution (weak conver-

gence).

Theorem 4.2 asserts the asymptotic normality of the test
statistic {zn(t)}, ∀n. It is to be noted that the asymptotic mean
of z(t) which is given by (bL + I)−1 h∗(1N⊗θ∗)Σ−1h(1N⊗θ∗)

2
has all of its entries positive, as (bL + I) is a M -matrix (see,
[19]) and hence its inverse has all of its entries non-negative,
i.e.,

[
(bL + I)

−1
]
ij
≥ 0, ∀i, j = 1, · · · , N . The next result

concerns with the characterization of thresholds which ensures
the probability of miss and probability of false alarm as defined
in (10) decay to zero asymptotically.

Theorem 4.3. Let the hypotheses of Theorem 4.2 hold. Con-
sider the decision rule defined in (9). For agent n, all θ∗ which
satisfy

[
(bL + I)−1 h∗(1N⊗θ∗)Σ−1h(1N⊗θ∗)

2

]
n
>

2
∑N
n=1Mn

N ,



where [a]n denotes the n-th element of a vector a, we have
the following choice of the thresholds

2
∑N
n=1 Mn

N
< ηn <

[
(bL + I)−1 h∗(1N ⊗ θ∗)Σ−1h(1N ⊗ θ∗)

2

]
n

,

(17)

for which we have that PM,θ∗(t) → 0 and PFA(t) → 0 as
t→∞. Specifically, PFA(t) decays to zero exponentially with
the following large deviations exponent3

lim sup
t→∞

1

t
log (P0 (zn(t) > ηn)) ≤ max

{
− η2

n

8b2 ‖Σc‖
,−LE(λ∗)

}
,

(18)

where LE(λ) = Nηnλ
4 +

(∑N
n=1Mn

2

)
log (1− λ) and λ∗ =

2
∑N
n=1Mn

Nηn
.

It is to be noted that the thresholds across agents can be
chosen to be different owing to the unequal asymptotic mean
at different agents and hence the large deviations upper bound
across different agents may be different. We discuss how the
above result can be used in practice to identify thresholds
that lead to asymptotic decay of the probabilities of error.
It is to be noted that as the observation parameters, i.e.,
Mn, N are known apriori, the threshold can be chosen to
be 2

∑N
n=1Mn

N + ε, where ε can be chosen to be arbitrarily
small. Further, from the feasible range of thresholds in The-
orem 4.3, a range on the θ∗s’ can be obtained in terms of
‖h (1N ⊗ θ∗)‖ such that under H1, as long as the true value
θ∗ of the parameter belongs to this range, the probability
of miss is guaranteed to decay to zero asymptotically. It is
important to note in this context that there exists some weak
signals, i.e., signals with low ‖h (1N ⊗ θ∗)‖ (but non-zero),
for which there may not exist a choice of thresholds to ensure
asymptotically decaying probability of miss. The signals for
which Theorem 4.3 is rendered to be inconclusive in the
manner described above, can be categorized in terms of θ∗.
Theorem 4.3 characterizes the range of feasible thresholds
exist that guarantee PM,θ∗(t), PFA(t) → 0 as t → ∞. The
incorporation of inaccurate initial parameter estimates into
the decision statistic, though sub-optimal with respect to the
classical GLRT, makes the detection scheme of CIGLRT
a recursive online procedure, while the classical GLRT is
an offline batch procedure as the corresponding parameter
estimate used at any time instant depends on the entire raw
data obtained at all agents so far and needs to be estimated
first before computing the decision statistic. In spite of the sub-
optimality in the update of the corresponding decision statistic,
the algorithm CIGLRT ensures that the probabilities of errors
decay to zero in the large sample (time) limit in the scenario
of imperfect communication.

5. CONCLUSION

In this paper, we have proposed a consensus + innovations
type algorithm, CIGLRT , in which every agent updates
its parameter estimate and decision statistic by simultaneous
processing of (noisy) neighborhood information and local

3By large deviations exponent, we mean the large deviations upper bound.

newly sensed information and where the inter-agent collab-
oration is over additive noise channels and is restricted to a
possibly sparse but connected communication graph. Under
rather generic assumptions on the agent sensing model, and
an (aggregate) global observability condition we established
the consistency of the parameter estimate sequence and char-
acterized the feasible choice of thresholds and other algorithm
parameters which ensure that the probabilities of errors per-
taining to the detection scheme decay to zero asymptotically.
A natural direction for future research consists of considering
models with non-Gaussian noise.
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