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Abstract

We examine fundamental tradeoffs in iterative distributed zeroth and first order stochastic optimization in multi-

agent networks in terms of communication cost (number of per-node transmissions) and computational cost, measured

by the number of per-node noisy function (respectively, gradient) evaluations with zeroth order (respectively, first

order) methods. Specifically, we develop novel distributed stochastic optimization methods for zeroth and first order

strongly convex optimization by utilizing a probabilistic inter-agent communication protocol that increasingly sparsifies

communications among agents as time progresses. Under standard assumptions on the cost functions and the noise

statistics, we establish with the proposed method the O(1/(Ccomm)4/3−ζ) and O(1/(Ccomm)8/9−ζ) mean square

error convergence rates, for the first and zeroth order optimization, respectively, where Ccomm is the expected

number of network communications and ζ > 0 is arbitrarily small. The methods are shown to achieve order-optimal

convergence rates in terms of computational cost Ccomp, O(1/Ccomp) (first order optimization) and O(1/(Ccomp)2/3)

(zeroth order optimization), while achieving the order-optimal convergence rates in terms of iterations. Experiments

on real-life datasets illustrate the efficacy of the proposed algorithms.

1. INTRODUCTION

Stochastic optimization has taken a central role in problems of learning and inference making over large data sets.
Many practical setups are inherently distributed in which, due to sheer data size, it may not be feasible to store data
in a single machine or agent. Further, due to the complexity of the objective functions (often, loss functions in the
context of learning and inference problems), explicit computation of gradients or exactly evaluating the objective at
desired arguments could be computationally prohibitive. The class of stochastic optimization problems of interest
can be formalized in the following way:

min f(x) = minEξ∼P [F (x; ξ)] ,

where the information available to implement an optimization scheme usually involves gradients, i.e., ∇F (x; ξ) or

function values of F (x; ξ) itself. However, both the gradients and the function values are only unbiased estimates of

the gradients and the function values of the desired objective f(x). Moreover, due to huge data sizes and distributed
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applications, the data is often split across different agents, in which case the (global) objective reduces to the sum

of N local objectives, F (x; ξ) =
∑N
i=1 Fi(x; ξ), where N denotes the number of agents. Such kind of scenarios

are frequently encountered in setups such as empirical risk minimization in statistical learning [1]. In order to

address the aforementioned problem setup, we study zeroth and first order distributed stochastic strongly convex

optimization over networks.

There are N networked nodes, interconnected through a preassigned possibly sparse communication graph, that

collaboratively aim to minimize the sum of their locally known strongly convex costs. We focus on zeroth and

first order distributed stochastic optimization methods, where at each time instant (iteration) k, each node queries a

stochastic zeroth order oracle (SZO) for a noisy estimate of its local function’s value at the current iterate (zeroth

order optimization), or a stochastic first order oracle (SFO) for a noisy estimate of its local function’s gradient

(first order optimization). In both of the proposed stochastic optimization methods, an agent updates its iterate

at each iteration by simultaneously assimilating information obtained from the neighborhood (consensus) and the

queried information from the relevant oracle (innovations). In the light of the aforementioned distributed protocol,

our focus is then on examining the tradeoffs between the communication cost, measured by the number of per-node

transmissions to their neighboring nodes in the network; and computational cost, measured by the number of queries

made to SZO (zeroth order optimization) or SFO (first order optimization).

Contributions. Our main contributions are as follows. We develop novel methods for zeroth and first order dis-

tributed stochastic optimization, based on a probabilistic inter-agent communication protocol that increasingly spar-

sifies agent communications over time. For the proposed zeroth order method, we establish the O(1/(Ccomm)8/9−ζ)

mean square error (MSE) convergence rate in terms of communication cost Ccomm, where ζ > 0 is arbitrarily small.

At the same time, the method achieves the order-optimal O(1/(Ccomp)2/3) MSE rate in terms of computational

cost Ccomp in the context of strongly convex functions with second order smoothness. For the first order distributed

stochastic optimization, we propose a novel method that is shown to achieve the O(1/(Ccomm)4/3−ζ) MSE

communication rate. At the same time, the proposed method retains the order-optimal O(1/(Ccomp)) MSE rate in

terms of the computational cost, the best achievable rate in the corresponding centralized setting.

The achieved results reveal an interesting relation between the zeroth and first order distributed stochastic opti-

mization. Namely, as we show here, the zeroth order method achieves a slower MSE communication rate than

the first order method due to the (unavoidable) presence of bias in nodes’ local functions’ gradient estimation.

Interestingly, increasing the degree of smoothness1 p in cost functions coupled with a fine-tuned gradient estimation

scheme, adapted to the smoothness degree, effectively reduces the bias and enables the zeroth order optimization

mean square error to scale as O(1/(Ccomp)(p−1)/p). Thus, with increased smoothness and appropriate gradient

estimation schemes, the zeroth order optimization scheme gets increasingly close in mean square error of its first

order counterpart. In a sense, we demonstrate that the first order (bias-free) stochastic optimization corresponds to

the limiting case of the zeroth order stochastic optimization when p→∞.

1Degree of smoothness p refers to the function under consideration being p-times continuously differentiable with the p-th order derivative

being Lipschitz continuous.



In more detail, the proposed distributed communication efficient stochastic methods work as follows. They utilize

an increasingly sparse communication protocol that we recently proposed in the context of distributed estimation

problems [2]. Therein, at each time step (iteration) k, each node participates in the communication protocol with its

immediate neighbors with a time-decreasing probability pk. The probabilities of communicating are equal across

all nodes, while the nodes’ decisions whether to communicate or not are independent of the past and of the other

nodes. Upon the transmission stage, if active, each node makes a weighted average of its own solution estimate

and the solution estimates received from all of its communication-active (transmitting) neighbors, assigning to each

neighbor a time-varying weight βk. In conjunction with the averaging step, the nodes in parallel assimilate the

obtained neighborhood information and the local information through a local gradient approximation step – based

on the noisy functions estimates only – with step-size αk.

By structure, the proposed distributed zeroth and first order stochastic methods are of a similar nature, expect for

the fact that rather than approximating local gradients based on the noisy functions estimates in the zeroth order

case, the first order setup assumes noisy gradient estimates are directly available.

Brief literature review. We now briefly review the literature to help us contrast this paper from prior work. In the

context of the extensive literature on distributed optimization, the most relevant to our work are the references that fall

within the following three classes of works: 1) distributed strongly convex stochastic optimization; 2) distributed

optimization over random networks (both deterministic and stochastic methods); and 3) distributed optimization

methods that aim to improve communication efficiency. While we pursue stochastic optimization in this paper,

the case of deterministic noiseless distributed optimization has seen much progress ( [3]–[6]) and more recently

accelerated methods ( [7], [8]). For the first class of works, several papers give explicit convergence rates in terms

of the iteration counter k, that here translates into computational cost Ccomp or equivalently number of queries to

SZO or SFO, under different assumptions. Regarding the underlying network, references [9], [10] consider static

networks, while the works [11]–[13] consider deterministic time-varying networks. They all consider first order

optimization.

References [9], [10] consider distributed first order strongly convex optimization for static networks, assuming that

the data distributions that underlie each node’s local cost function are equal (reference [9] considers empirical

risks while reference [10] considers risk functions in the form of expectation); this essentially corresponds to

each nodes’ local function having the same minimizer. References [11]–[13] consider deterministically varying

networks, assuming that the “union graph” over finite windows of iterations is connected. The papers [9]–[12]

assume undirected networks, while [13] allows for directed networks and assumes a bounded support for the

gradient noise. The works [9], [11]–[13] allow the local costs to be non-smooth, while [10] assumes smooth costs,

as we do here. With respect to these works, we consider random networks (that are undirected and connected on

average), smooth costs, and allow the noise to have unbounded support. The authors of [14] propose a distributed

zeroth optimization algorithm for non-convex minimization with a static graph, where a random directions-random

smoothing approach was employed.

For the second class of works, distributed optimization over random networks has been studied in [15]–[17].

References [15], [16] consider non-differentiable convex costs, first order methods, and no (sub)gradient noise,



while reference [17] considers differentiable costs with Lipschitz continuous and bounded gradients, first order

methods, and it also does not allow for gradient noise, i.e., it considers methods with exact (deterministic) gradients.

Reference [18] considers distributed stochastic first order methods and establishes the method’s O(1/k) convergence

rate. References [19] considers a zeroth order distributed stochastic approximation method, which queries the SZO

2d times at each iteration where d is the dimension of the optimizer and establishes the method’s O(1/k1/2)

convergence rate in terms of the number of iterations under first order smoothness.

In summary, each of the references in the two classes above is not primarily concerned with studying communication

rates of distributed stochastic methods. Prior work achieves order-optimal rates in terms of computational cost (that

translates here into the number of iterations k), both for the zeroth order, e.g., [19], and for the first order, e.g.,

[18], distributed strongly convex optimization.2In contrast, we establish here communication rates as well. This

paper and our prior works [19], [20] distinguish further from other works on distributed zeroth order optimization,

e.g., [14], [21], in that, not only the gradient is approximated through function values due to the absence of

first order information, but also the function values themselves are subject to noise. Reference [20] considers

a communication efficient zeroth order approximation scheme, where the convergence rate is established to be

O(1/k1/2) and the MSE-communication is improved to O(1/(Ccomm)2/3−ζ). In contrast to [20], with additional

smoothness assumptions we improve the convergence rate to O(1/k2/3) and the MSE-communication is further

improved to O(1/(Ccomm)8/9−ζ).

Finally, we review the class of works that are concerned with designing distributed methods that achieve commu-

nication efficiency, e.g., [2], [22]–[27]. In [26], a data censoring method is employed in the context of distributed

least squares estimation to reduce computational and communication costs. However, the communication savings

in [26] are a constant proportion with respect to a method which utilizes all communications at all times, thereby

not improving the order of the convergence rate. References [22]–[24] also consider a different setup than we

do here, namely they study distributed optimization where the data is available a priori (i.e., it is not streamed).

This corresponds to an intrinsically different setting with respect to the one studied here, where actually geometric

MSE convergence rates are attainable with stochastic-type methods, e.g., [28]. In terms of the strategy to save

communications, references [22]–[25] consider, respectively, deterministically increasingly sparse communication,

an adaptive communication scheme, and selective activation of agents. These strategies are different from ours;

we utilize randomized, increasingly sparse communications in general. In references [2], [27], we study distributed

estimation problems and develop communication-efficient distributed estimators. The problems studied in [2], [27]

have a major difference with respect to the current paper in that, in [2], [27], the assumed setting yields individual

nodes’ local gradients to evaluate to zero at the global solution. In contrast, the model assumed here does not

feature such property, and hence it is more challenging.

Finally, we comment on the recent paper [25] that develops communication-efficient distributed methods for both

non-stochastic and stochastic distributed first order optimization, both in the presence and in the absence of the

2The works in the first two classes above utilize a non-diminishing amount of communications across iterations, and hence they achieve at

best the O(1/(Ccomm)) (first order optimization) and O(1/(Ccomm)1/2) communication rates.



strong convexity assumption. For the stochastic, strongly convex first order optimization, [25] shows that the method

therein gets ε-close to the solution in O(1/
√
ε) communications and with an O(1/ε) computational cost. The current

paper has several differences with respect to [25]. First, reference [25] does not study zeroth order optimization.

Second, this work assumes for the gradient noise to be independent of the algorithm iterates. This is a strong

assumption that may be not satisfied, e.g., with many machine learning applications. Third, while we assume here

twice differentiable costs, this assumption is not imposed in [25]. Finally, the method in [25] is considerably more

complex than the one proposed here, with two layers of iterations (inner and outer iterations). In particular, the inner

iterations involve solving an exact minimization problem which necessarily points to the usage of an off-the-shelf

solver, the computation cost of which is not factored into the computation cost in [25].

Paper organization. The next paragraph introduces notation. Section 2 describes the model and the proposed

algorithms for zeroth and first order distributed stochastic optimization. Section 3 states our convergence rates

results for the two methods. Sections 5 and 6 provide proofs for the zeroth and first order methods, respectively.

Section 4 demonstrates communication efficiency of the proposed methods through numerical examples. Finally,

we conclude in Section 7.

Notation. We denote by R the set of real numbers and by Rm the m-dimensional Euclidean real coordinate space.

We use normal lower-case letters for scalars, lower case boldface letters for vectors, and upper case boldface letters

for matrices. Further, we denote by: Aij the entry in the i-th row and j-th column of a matrix A; A> the transpose

of a matrix A; ⊗ the Kronecker product of matrices; I , 0, and 1, respectively, the identity matrix, the zero matrix,

and the column vector with unit entries; J the N ×N matrix J := (1/N)11>. When necessary, we indicate the

matrix or vector dimension as a subscript. Next, A � 0 (A � 0) means that the symmetric matrix A is positive

definite (respectively, positive semi-definite). For a set X , |X | denotes the cardinality of set X . We denote by:

‖ · ‖ = ‖ · ‖2 the Euclidean (respectively, induced) norm of its vector (respectively, matrix) argument; λi(·), the i-th

smallest eigenvalue of its matrix argument; ∇h(w) and ∇2h(w) the gradient and Hessian, respectively, evaluated

at w of a function h : Rm → R, m ≥ 1; P(A) and E[u] the probability of an event A and expectation of a random

variable u, respectively. By ej we denote the j-th column of the identity matrix I where the dimension is made clear

from the context. Finally, for two positive sequences ηn and χn, we have: ηn = O(χn) if lim supn→∞
ηn
χn

<∞.

2. MODEL AND THE PROPOSED ALGORITHMS

The network of N agents in our setup collaboratively aim to solve the following unconstrained problem:

min
x∈Rd

N∑
i=1

fi(x), (1)

where fi : Rd 7→ R is a strongly convex function available to node i, i = 1, ..., N . We make the following

assumption on the functions fi(·):

Assumption 1. For all i = 1, ..., N , function fi : Rd 7→ R is twice continuously differentiable with Lipschitz
continuous gradients. In particular, there exist constants L, µ > 0 such that for all x ∈ Rd,

µ I � ∇2fi(x) � L I.



From Assumption 1 we have that each fi, i = 1, · · · , N , is µ-strongly convex. Using standard properties of strongly
convex functions, we have for any x,y ∈ Rd:

fi(y) ≥ fi(x) +∇fi(x)> (y − x) +
µ

2
‖x− y‖2,

‖∇fi(x)−∇fi(y)‖ ≤ L ‖x− y‖.

We also have that from assumption 1, the optimization problem in (1) has a unique solution, which we denote by
x∗ ∈ Rd. Throughout the paper, we use the sum function which is defined as f : Rd → R, f(x) =

∑N
i=1 fi(x). We

consider distributed stochastic gradient methods to solve (1). That is, we study algorithms of the following form:

xi(k + 1) = xi(k)−
∑

j∈Ωi(k)

γi,j(k) (xi(k)− xj(k))

− αkĝi(xi(k)), (2)

where the weight assigned to an incoming message γi,j(k) and the neighborhood of an agent Ωi(k) are determined

by the specific instance of the designated communication protocol. The approximated gradient ĝi(xi(k)) is specific

to the optimization, i.e., whether it is a zeroth order optimization or a first order optimization scheme. Technically

speaking, as we will see later, a zeroth order optimization scheme approximates the gradient as a biased estimate

of the gradient while a first order optimization scheme approximates the gradient as an unbiased estimate of the

gradient. The variation in the gradient approximation across first order and zeroth order methods can be attributed

to the fact that the oracles from which the agents query for information pertaining to the loss function differ. For

instance, in the case of the zeroth order optimization, the agents query a stochastic zeroth order oracle (SZO) and

in turn receive noisy function values (unbiased estimates) for the queried point. However, in the case of first order

optimization, the agents query a stochastic first order oracle (SFO) and receive unbiased estimates of the gradient.

In subsequent sections, we will explore the gradient approximations in greater detail. Before stating the algorithms,

we first discuss the communication scheme. Specifically, we adopt the following model.

1) Communication Scheme: The inter-node communication network to which the information exchange between

nodes conforms to is modeled as an undirected simple connected graph G = (V,E), with V = [1 · · ·N ] and E denot-

ing the set of nodes and communication links. The neighborhood of node n is given by Ωn = {l ∈ V | (n, l) ∈ E}.

The node n has degree dn = |Ωn|. The structure of the graph is described by the N × N adjacency matrix,

A = A> = [Anl], Anl = 1, if (n, l) ∈ E, Anl = 0, otherwise. The graph Laplacian R = D − A is

positive semidefinite, with eigenvalues ordered as 0 = λ1(R) ≤ λ2(R) ≤ · · · ≤ λN (R), where D is given

by D = diag (d1 · · · dN ). We make the following assumption on R.

Assumption 2. The inter-agent communication graph is connected on average, i.e., R is connected. In other words,

λ2(R) > 0.

Thus, R corresponds to the maximal graph, i.e., the graph of all allowable communications. We now describe our
randomized communication protocol that selects a (random) subset of the allowable links at each time instant for
information exchange.



For each node i, at every time k, we introduce a binary random variable ψi,k, where

ψi,k =

ρk with probability ζk

0 otherwise,
(3)

where ψi,k’s are independent both across time and the nodes, i.e., across k and i respectively. The random variable
ψi,k abstracts out the decision of the node i at time k whether to participate in the neighborhood information
exchange or not. We specifically take ρk and ζk of the form

ρk =
ρ0

(k + 1)ε/2
, ζk =

ζ0
(k + 1)(τ/2−ε/2)

, (4)

where 0 < τ ≤ 1
2 and 0 < ε < τ . Furthermore, define βk to be

βk = (ρkζk)2 =
β0

(k + 1)τ
, (5)

where β0 = ρ2
0ζ

2
0 . With the above development in place, we define the random time-varying Laplacian R(k),

where R(k) ∈ RN×N abstracts the inter-node information exchange as follows:

Ri,j(k) =


−ψi,kψj,k {i, j} ∈ E, i 6= j

0 i 6= j, {i, j} /∈ E∑
l6=i ψi,kψl,k i = j.

(6)

The above communication protocol allows two nodes to communicate only when the link is established in a
bi-directional fashion and hence avoids directed graphs. The design of the communication protocol as depicted in
(3)-(6) not only decays the weight assigned to the links over time but also decays the probability of the existence
of a link. Such a design is consistent with frameworks where the agents have finite power and hence not only the
number of communications, but also, the quality of the communication decays over time. We have, for {i, j} ∈ E
and i 6= j:

E [Ri,j(k)] = − (ρkζk)2 = −βk = − β0

(k + 1)τ

E
[
R2
i,j(k)

]
=
(
ρ2
kζk
)2

=
ρ2

0β0

(k + 1)τ+ε
. (7)

Thus, we have that, the variance of Ri,j(k) is given by,

Var (Ri,j(k)) =
β0ρ

2
0

(k + 1)τ+ε
− β2

0

(k + 1)2τ
. (8)

Define, the mean of the random time-varying Laplacian sequence {R(k)} as Rk = E [R(k)] and R̃(k) =

R(k)−Rk. Note that, E
[
R̃(k)

]
= 0, and

E
[∥∥∥R̃(k)

∥∥∥2
]
≤ 4N2E

[
R̃2
i,j(k)

]
=

4N2β0ρ
2
0

(k + 1)τ+ε
− 4N2β2

0

(k + 1)2τ
, (9)

where ‖·‖ denotes the L2 norm. The above equation follows by relating the L2 and Frobenius norms.
We also have that, Rk = βkR, where

Ri,j =


−1 {i, j} ∈ E, i 6= j

0 i 6= j, {i, j} /∈ E

−
∑
l 6=iRi,l i = j.

(10)

Technically speaking, the communication graph at each time k encapsulated as R(k) need not be connected at all
times, although the graph of allowable links G is connected.. In fact, at any given time k, only a few of the possible



links could be active. However, since Rk = βkR, we note that, by Assumption 2, the instantaneous Laplacian
R(k) is connected on average.The connectedness in average basically ensures that over time, the information from
each agent in the graph reaches other agents over time in a symmetric fashion and thus ensuring information flow,
while providing the leeway for the instantaneous communication graphs at different times to be not connected.
We employ a primal algorithm for solving the optimization problem in (1). In particular, the update in (2) can then
be written in a vector form as follows:

x(k + 1) = Wkx(k)− αkĜ(x(k)), (11)

where x(k) =
[
x>1 (k), · · · ,x>N (k)

]> ∈ RNd, F (x) =
∑N
i=1 fi(xi), x =

[
x>1 , · · · ,x>N

]> ∈ RNd, Ĝ(x(k)) = [ĝ>i (xi(k)), · · · , ĝ>(xN (k))]>

and Wk = (I−R(k))⊗ Id. We state an assumption on the weight sequences before proceeding further.

Assumption 3. The weight sequence αk is given by α0/(k+ 1), where α0 > 1/µ. For the sequence ρk as defined
in (4), it is chosen in such a way that,

ρ2
0 ≤

4N2

λ2

(
R
) . (12)

In the following sections, we propose two different approaches to solve the optimization problem in (1). The

first approach involves zeroth order optimization, while the second approach involves a first order optimization. We

first study the zeroth order approach to the problem in (1).

A. Zeroth Order Optimization

We employ a random directions stochastic approximation (RDSA) type method from [29] adapted to our distributed

setup to solve (1). Each node i, i = 1, ..., N , in our setup maintains a local copy of its local estimate of the optimizer

xi(k) ∈ Rd at all times. In addition to the smoothness assumption in 1, we define additional smoothness assumptions

in the context of zeroth order optimization.

Assumption A1. For all i = 1, ..., N , the functions fi : Rd 7→ R have their Hessian to be M -Lipschitz, i.e.,

‖∇2fi(x)−∇2fi(y)‖ ≤M ‖x− y‖,∀i = 1, · · · , N.

In order to carry out the optimization, each agent i makes queries to the SZO at time k, from which the agent
obtains noisy function values of fi(xi(k)). Denote the noisy value of fi(·) as f̂i(·) where,

f̂i(xi(k)) = fi(xi(k)) + v̂i(k;xi(k)), (13)

where the first argument in v̂i(k;xi(k)) is the iteration number, and the second argument is the point at which
the SZO oracle is queried. The properties of the noise v̂i(k;xi(k)) are discussed further ahead. Typically due to
the unavailability of the analytic form of the functionals in zeroth order methods, the gradient cannot be explicitly
evaluated and hence, we resort to a gradient approximation. In order to approximate the gradient, each agent makes
three calls to the stochastic zeroth order oracle. For instance, agent i queries for fi(xi(k)+ckzi,k), fi(xi(k)+ckzi,k/2)

and fi(xi(k)) at time k and obtains f̂i(xi(k) + ckzi,k), f̂i(xi(k) + ckzi,k/2) and f̂i(xi(k)) respectively, where ck is a
carefully chosen time-decaying constant and zi,k is a random vector (to be specified soon) such that E

[
zi,kz

>
i,k

]
=

Id.
Denote by ĝi(xi(k)) the approximated gradient which is given by:

ĝi(xi(k))
.
= 2g̃i

(
xi(k),

ck
2

)
− g̃i (xi(k), ck)



=
4f̂i
(
xi(k) + ck

2
zi,k
)
− 4f̂i (xi(k))

ck
zi,k

− f̂i (xi(k) + ckzi,k)− f̂i (xi(k))

ck
zi,k, (14)

where g̃i (·, ·) represents a first order finite difference operation and θ1, θ2 ∈ [0, 1]. Note that, the gradient
approximation derived in (14) involves the noise in the retrieved function value from the SZO differently from other
RDSA approaches such as in [21], [29]. The finite difference technique used in (14) resembles, the twicing trick

commonly used in Kernel density estimation which is employed so as to reduce bias and approximately eliminate
the effect of the second degree term from the bias. It is also to be noted that the number of queries made to the
SZO at every gradient approximation is 3. Thus, we can write,

ĝi(xi(k)) = ∇fi (xi(k)) + E [ĝi(xi(k))|Fk]−∇fi (xi(k))︸ ︷︷ ︸
ckbi(xi(k))

+ gi(xi(k))− E [ĝi(xi(k))|Fk] +
vi(k;xi(k))zi,k

ck︸ ︷︷ ︸
hi(xi(k))

, (15)

where

gi(xi(k)) =
4fi
(
xi(k) + ck

2
zi,k
)
− 4fi (xi(k))

ck
zi,k

− fi (xi(k) + ckzi,k)− fi (xi(k))

ck
zi,k, (16)

vi(k;xi(k)) = 4
(
f̂i
(
xi(k) +

ck
2
zi,k
)
− fi

(
xi(k) +

ck
2
zi,k
))

− 3(f̂i(xi(k))− fi(xi(k)))− (f̂i (xi(k) + ckzi,k)

− fi (xi(k) + ckzi,k)), (17)

and, Fk denotes the history of the proposed algorithm up to time k. Given that the sources of randomness in

our algorithm are the noise sequence {v(k;x(k))}, the random network sequence {R(k)} and the random vectors

for directional derivatives {zk}, Fk is given by the σ-algebra generated by the collection of random variables

{R(s), v(k;x(k)), zi,s}, i = 1, ..., N , s = 0, ..., k − 1.

In general, the higher order smoothness imposed by Assumption 3 allows us to use a higher order finite difference

approximation for estimating the gradient. Due to assumption 3, the bias in the gradient estimate by employing

a second order finite difference approximation of the gradient is of the order O(c2k). Instead, a first order finite

difference approximation of the gradient would have yielded a bias of O(ck). More generally, an assumption

involving p-th order smoothness of the loss functions would have enabled usage of a p-th degree finite difference

approximation of the gradient thus leading to a bias of O(cpk).

Assumption A2. The zi,k’s are drawn from a distribution P such that E
[
zi,kz

>
i,k

]
= Id, s1(P ) = E

[
‖zi,k‖4

]
and

s2(P ) = E
[
‖zi,k‖6

]
are finite.

We provide two examples of two such distributions. If zi,k’s are drawn from N (0, Id), then E
[
‖zi,k‖4

]
= d(d+ 2)

and E
[
‖zi,k‖6

]
= d(d + 2)(d + 4). If zi,k’s are drawn uniformly from the l2-ball of radius

√
d, then we have,

‖zi,k‖ =
√
d, E

[
‖zi,k‖4

]
= d2 and E

[
‖zi,k‖4

]
= d3. For the rest of the paper, we assume that zi,k’s are sampled

from a normal distribution with E
[
zi,kz

>
i,k

]
= Id or uniformly from the surface of the l2-ball of radius

√
d.



Remark 2.1. The RDSA scheme (see, for example [29]) used here is similar to the simultaneous perturbation

stochastic approximation scheme (SPSA) as proposed in [30]. In SPSA, each dimension i of the optimization iterate

is perturbed by a random variable ∆i. However, instead of RDSA where the directional derivative is taken along

the sampled vector z, the directional derivative in case of SPSA is along the direction [1/∆1, · · · , 1/∆d] which

thus needs boundedness of the inverse moments of the random variable ∆i. The particular choice for ∆i’s is taken

to be the Bernoulli distribution with ∆i’s taking values 1 and −1 with probability 0.5. It is to be noted that at each

iteration, both RDSA and SPSA approximate the gradient by making two calls to the stochastic zeroth order oracle

as opposed to d calls in the case of Kiefer Wolfowitz Stochastic Approximation (KWSA) (see, [31] for example).

For arbitrary deterministic initializations xi(0) ∈ Rd, i = 1, ..., N , the optimizer update rule at node i and k =

0, 1, ..., is given as follows:

xi(k + 1) = xi(k)−
∑

j∈Ωi(k)

ψi,kψj,k (xi(k)− xj(k))

− αkĝi(xi(k)), (18)

where ĝi(·) is as defined in (15). Comparing to the general update in (2), the time-varying weight γi,j(k) at agent

i to the incoming message from agent j is given by ψj,k.

Remark 2.2. The main intuition behind the randomized activation albeit in a controlled manner for both the zeroth

order and first order optimization methods is the fact that in expectation both the updates exactly reduce to the

update where the communication graph between agents is realized by the expected Laplacian.

It is to be noted that unlike first order stochastic gradient methods, where the algorithm has access to unbiased

estimates of the gradient, the local gradient estimates gi(·) used in (18) are biased (see (15)) due to the unavailability

of the exact gradient functions and their approximations using the zeroth order scheme in (14). The update is

carried on in all agents parallely in a synchronous fashion. The weight sequences {αk}, {ck} and {βk} are given

by αk = α0/(k + 1), ck = c0/(k + 1)δ and βk = β0/(k + 1)τ respectively, where α0, c0, β0 > 0. We state an

assumption on the weight sequences before proceeding further.

Assumption A3. The sequence ck is given by:

ck =
1

s1(P )(k + 1)δ
, (19)

where δ > 0. The constant δ > 0 is chosen in such a way that,
∞∑
k=1

α2
k

c2k
<∞ (20)

The update in (18) can be written as:

x(k + 1) = Wkx(k)− αk∇F (x(k))− αkckb(x(k))

− αkh(x(k)), (21)

where b(x(k)) =
[
b>1 (x1(k)) , · · · ,b>N (xN (k))

]> ∈ RNd and h(x(k)) =
[
h>1 (x1(k)) , · · · ,h>N (xN (k))

]> ∈ RNd. We

state an assumption on the measurement noises next.



Assumption A4. For each i = 1, ..., N , the sequence of measurement noises {vi(k;xi(k))} satisfies for all k =

0, 1, ...:

E[ vi(k;xi(k)) | Fk, zi,k] = 0, almost surely (a.s.)

E[ vi(k;xi(k))2 | Fk, zi,k] ≤ cv‖xi(k)‖2 + σ2
v, a.s., (22)

where cv and σ2
v are nonnegative constants.

Assumption A4 is standard in the analysis of stochastic optimization methods, e.g., [10]. It is stated in terms of noise

vi(k;xi(k)) in (17) rather then directly in terms of the SZO noises in equation (13), for notational simplicity. An

equivalent statement can be made in terms of the noises in (13). The assumption about the conditional independence

between the random directions zi,k and the function noise vi(k;xi(k)) is mild. It merely formalizes the model that

we consider, namely that, given history Fk, drawing a random direction sample zi,k and querying function values

from the SZO are performed in a statistically independent manner.
We remark that by Assumption A4,

E [vi(k;xi(k))zi,k|Fk] = E [zi,kE [vi(k;xi(k))|Fk, zi,k] | Fk]

⇒ E [vz(k;x(k)) | Fk] = 0. (23)

and,

E
[
‖vi(k;xi(k))zi,k‖2 |Fk

]
= E

[
‖zi,k‖2 E

[
v2
i (k;xi(k))|Fk, zi,k

]
|Fk
]

≤ E
[
‖zi,k‖2

] (
cv‖xi(k)‖2 + σ2

v

)
, (24)

where if zi,k’s are sampled from a normal distribution with E
[
zi,kz

>
i,k

]
= Id or uniformly from the surface of

the l2-ball of radius
√
d, then we have,

E
[
‖vi(k;xi(k))zi,k‖2 |Fk

]
≤ d

(
cv‖xi(k)‖2 + σ2

v

)
. (25)

B. First Order Optimization

Each node i, i = 1, ..., N , in the network maintains its own optimizer xi(k) ∈ Rd at each time step (iterations)
k = 0, 1, ...,. Specifically, for arbitrary deterministic initial points xi(0) ∈ Rd, i = 1, ..., N , the update rule at node
i and k = 0, 1, ..., is as follows:

xi(k + 1) = xi(k)−
∑
j∈Ωi

ψi,kψj,k (xi(k)− xj(k)) (26)

− αk (∇fi(xi(k)) + ui(k) ) .

In comparison to the generalized update in (2), the weights assigned to incoming messages is given by γi,j(k) =

ψi,kψj,k, while the approximated gradient is given by ∇fi(xi(k)) +ui(k). The update (26) is realized in a parallel
fashion at all nodes i = 1, ..., N . First, each node i, when activated, i.e., when ψi,k 6= 0, broadcasts xi(k) to all its
active neighbors j ∈ Ωi which satisfy ψj,k 6= 0 and receives xj(k) from all j ∈ Ωi which are active. Subsequently,



each node i, i = 1, ..., N makes update (26), which completes an iteration. Finally, ui(k) is noise in the calculation
of the fi’s gradient at iteration k. For k = 0, 1, ..., algorithm (26) can be compactly written as follows:

x(k + 1) = Wkx(k)− αk (∇F (x(k)) + u(k)) , (27)

where x =
[
x>1 , · · · ,x>N

]> ∈ RNd and u(k) =
[
u>1 (k), · · · ,u>N (k)

]> ∈ RNd. We make the following standard

assumption on the gradient noises. First, denote by Sk the history of algorithm (26) up to time k; that is, Sk,

k = 1, 2, ..., is an increasing sequence of σ-algebras, where Sk is the σ-algebra generated by the collection of

random variables {R(s), ui(t)}, i = 1, ..., N , s = 0, ..., k − 1, t = 0, ..., k − 1.

Assumption B2. For each i = 1, ..., N , the sequence of noises {ui(k)} satisfies for all k = 0, 1, ...:

E[ui(k) | Sk ] = 0, almost surely (a.s.) (28)

E[ ‖ui(k)‖2 | Sk ] ≤ cu‖xi(k)‖2 + σ2
u, a.s., (29)

where cu is a nonnegative constant.

Communication Cost Define the communication cost Ck to be the expected per-node number of transmissions up
to iteration k, i.e.,

Ck = E

[
k−1∑
s=0

I{node C transmits at s}

]
, (30)

where IA represents the indicator of event A. Note that the per-node communication cost in (30) is the same as the

network average of communication costs across all nodes, as the activation probabilities are homogeneous across

nodes. We now proceed to the main results pertaining to the proposed zeroth order and first order optimization

schemes.

3. CONVERGENCE RATES: STATEMENT OF MAIN RESULTS AND INTERPRETATIONS

In this section, we state the results for both the zeroth order and the first order optimization algorithms.

A. Main Results: Zeroth Order Optimization

We state the main result concerning the mean square error at each agent i next.

Theorem 3.1. 1) Consider the optimizer estimate sequence {x(k)} generated by the algorithm (18). Let assumptions

1-3 and A1-A4 hold. Then, for each node i’s optimizer estimate xi(k) and the solution x? of problem (1), ∀k ≥ 0

there holds:

E
[
‖xi(k)− x∗‖2

]
≤ 2Mk +

64NL2∆1,∞α
2
0

µ2λ2
2

(
R
)
c20β

2
0(k + 1)2−2τ−2δ

16NM2d2(P )c40
µ2(k + 1)4δ

+ 2Qk +
8∆1,∞α

2
0

λ2
2

(
R
)
β2

0c
2
0(k + 1)2−2τ−2δ

+
4Nα0

(
dcvq∞(N, d, α0, c0) + dNσ2

1

)
µc20(k + 1)1−2δ

, (31)

where, ∆1,∞ = 6dcvq∞(N, d, α0, c0)+6dNσ2
1 and q∞(N, d, α0, c0) = E

[
‖x(k2)− xo‖2

]
+4 ‖∇F (xo)‖2

µ2 +
√
Ns1(P )Mα0c

2
0

8δ
+

Ns21(P )M2α2
0c

4
0

16(1+4δ)
+
dα2

0(2cvN‖xo‖2+Nσ2
v)

c20(1−2δ)
+
α2
0c

2
0

√
Ns1(P )M‖∇F (xo)‖

1+2δ
+

2Nα2
0c

4
0s2(P )

1+4δ
+

4α2
0c

2
0Ns1(P )

1+2δ
‖∇F (xo)‖2, k2 = max{k0, k1},

k0 = inf{k|µ2α2
k < 1} and k1 = inf

{
k|µ

2
>
√
N
4
s1(P )Mc2k + 2dcvαk

c2
k

+ 4αkc
2
kNs1(P )L2

}
, with Mk and Qk decaying



faster than the rest of the terms.

2) In particular, the rate of decay of the RHS of (31) is given by (k+1)−δ1 , where δ1 = min {1− 2δ, 2− 2τ − 2δ, 4δ}.
By, optimizing over τ and δ, we obtain that for τ = 1/2 and δ = 1/6,

E
[
‖xi(k)− x∗‖2

]
≤ 2Mk +

32NL2∆1,∞α
2
0

µ2λ2
2

(
R
)
c20β

2
0(k + 1)2/3

16NM2d2(P )c20
µ2(k + 1)2/3

+ 2Qk +
8∆1,∞α

2
0

λ2
2

(
R
)
β2

0c
2
0(k + 1)2/3

+
4Nα0

(
dcvq∞(N, d, α0, c0) + dNσ2

1

)
µc20(k + 1)2/3

= O

(
1

k
2
3

)
, ∀i.

3) The communication cost is given by,

E

[
k∑
t=1

ζt

]
= O

(
k

3
4

+ ε
2

)
.

and the MSE-communication rate is given by,

E
[
‖xi(k)− x?‖2

]
= O

(
C−8/9+ζ
k

)
, (32)

where ζ can be arbitrarily small.

Theorem 3.1 asserts an O
(
C−8/9+ζ
k

)
MSE-communication rate can be achieved while keeping the MSE decay rate

at O
(
k−

2
3

)
. The performance of the zeroth order optimization scheme depends explicitly on the connectivity of

the expected Laplacian through the terms 32NL2∆1,∞α
2
0

µ2λ2
2(R)c20β2

0(k+1)0.5
and 8∆1,∞α

2
0

λ2
2(R)β2

0c
2
0(k+1)0.5

. In particular, communication

graphs which are well connected, i.e., have higher values of λ2

(
R
)

will have lower MSE as compared to a

counterpart with lower values of λ2

(
R
)
.

If higher order smoothness assumptions are made, i.e., a p-th order smoothness assumption is made which is then

exploited by means of a p-th degree finite difference gradient approximation, then by repeating the same proof

arguments, the rate in terms of iteration count can be shown to improve to O
(
k−

p
p+1

)
. The improvement can be

attributed to a better bias-variance tradeoff as illustrated by the terms 8M2d2(P )c40
µ2(k+1)2pδ

and
4Nα0(dcvq∞(N,d,α0,c0)+dNσ2

1)
µc20(k+1)1−2δ .

The corresponding MSE-communication rate improves to O
(
C
− 4p

3(p+1)
+ζ

k

)
.

B. Main Results: First Order Optimization

We state the main result concerning the mean square error at each agent i next.

Theorem 3.2. Consider algorithm (26) with step-sizes αk = α0

k+1 and βk = β0

(k+1)1/2
, where β0 > 0 and α0 > 2/µ.

Further, let Assumptions 1-3 and B2 hold.

1) Then, for each node i’s solution estimate xi(k) and the solution x? of problem (1), , ∀k ≥ 0 there holds:

E
[
‖xi(k)− x∗‖2

]
≤ 2Mk +

32NL2∆1,∞α
2
0

µ2λ2
2

(
R
)
β2

0(k + 1)

+ 2Qk +
4∆1,∞α

2
0

λ2
2

(
R
)
β2

0(k + 1)
, (33)

where, ∆1,∞ = 2 ‖∇F (x(k))‖2+4cuq∞(N,α0)+4Nσ2
1 and q∞(N,α0) = E

[
‖x(k2)− xo‖2

]
+π2

6
α2

0

(
2cuN ‖xo‖2 +Nσ2

u

)
+

4 ‖∇F (xo)‖2
µ2 , k2 = max{k0, k1}, k0 = inf{k|µ2α2

k < 1} and k1 = inf
{
k|µ

2
> 2cuαk

}
, with Mk and Qk decaying faster



than the rest of the terms.

2) The communication cost is given by,

E

[
k∑
t=1

ζt

]
= O

(
k

3
4

+ ε
2

)
,

leading to the following MSE-communication rate:

E
[
‖xi(k)− x?‖2

]
= O

(
C−

4
3

+ζ

k

)
, (34)

where ζ can be arbitrarily small.

We remark that the condition α0 > 2/µ can be relaxed to require only a positive α0, in which case the rate

becomes O(ln(k)/k), instead of O(1/k). Also, to avoid large step-sizes at initial iterations for a large α0, step-size

αk can be modified to αk = α0/(k + k0), for arbitrary positive constant k0, and Theorem 3.2 continues to hold.

Theorem 3.2 establishes the O(1/k) MSE rate of convergence of algorithm (26); due to the assumed fi’s strong

convexity, the theorem also implies that E [f(xi(k))− f(x?)] = O(1/k).

4. SIMULATIONS

In this section, we provide evaluations of the proposed algorithms on the Abalone dataset ( [32]). To be specific,

we consider `2-regularized empirical risk minimization for the Abalone dataset, where the regularization function is

given by Ψi(x) = 1
2‖x‖

2. We consider a 10 node network for both the zeroth and first order optimization schemes.

The Abalone dataset has 4177 data points out of which 577 data points are kept aside as the test set and the other

3600 is divided equally among the 10 nodes resulting in each node having 360 data points. For the zeroth order

optimization, we compare the proposed undirected sequence of Laplacian constructions based optimization scheme

and the static Laplacian (Benchmark) based optimization schemes. The benchmark scheme is characterized by the

communication graph being static and thereby resulting agents connected through a link to exchange messages at

all times. The data points at each node are sampled without replacement in a contiguous manner. The vectors zi,ks

for evaluating directional derivatives were sampled from a normal distribution with identity covariance. Figure 1

compares the test error for the three aforementioned schemes, where it can be clearly observed that the test error

is indistinguishable in terms of the number of iterations or equivalently in terms of the number of queries to the

stochastic zeroth oracle. Figure 2 demonstrates the superiority the proposed algorithm in terms of the test error versus

communication cost as compared to the benchmark as predicted by Theorem 3.1. For example, at the same relative

test error level, the proposed algorithm uses up to 3x less number of transmissions as compared to the benchmark

scheme. In Figure 3, the test error of the communication efficient first order optimization scheme is compared

with the test error of the benchmark scheme which refers to the optimization scheme with the communication

graph abstracted by a static Laplacian in terms of iterations or equivalently the number of queries per agent to

the stochastic first order oracle, i.e., gradient evaluations. Figure 4 demonstrates the superiority of the proposed

communication efficient first order optimization scheme in terms of the test error versus communication cost as

compared to the benchmark as predicted by Theorem 3.2. For example, at the same relative test error level, the

proposed algorithm uses up to 3x less number of transmissions as compared to the benchmark scheme.
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5. PROOF OF THE MAIN RESULT: ZEROTH ORDER OPTIMIZATION

The proof of the main result proceeds through three main steps. The first step involves establishing the bound-

edness of the iterate sequence, while the second step involves establishing the convergence rate of the optimizer

sequence at each agent to the network averaged optimizer sequence. The convergence of the network averaged

optimizer is then analyzed as the final step and in combination with the second step results in the establishment of

bounds on MSE of the optimizer sequence at each agent.

Lemma 5.1. Let the hypotheses of Theorem 3.1 hold. Then, we have,

E
[
‖x(k)− xo‖2

]
≤ qk2(N, d, α0, c0) + 4

‖∇F (xo)‖2

µ2

+

√
Ns1(P )Mα0c

2
0

8δ
+
Ns2

1(P )M2α2
0c

4
0

16(1 + 4δ)

+
dα2

0

(
2cvN ‖xo‖2 +Nσ2

v

)
c20(1− 2δ)

+
α2

0c
2
0

√
Ns1(P )L ‖∇F (xo)‖

1 + 2δ

+
Nα2

0c
4
0s2(P )

1 + 4δ
+

4α2
0c

2
0Ns1(P )

1 + 2δ
‖∇F (xo)‖2

.
= q∞(N, d, α0, c0),

where E
[
‖x(k2)− xo‖2

]
≤ qk2(N, d, α0, c0), k2 = max{k0, k1}, k0 = inf{k|µ2α2

k < 1} and k1 = inf
{
k|µ

2
>
√
N
4
s1(P )Mc2k + 2dcvαk

c2
k

+ 4αkc
2
kNs1(P )L2

}
.

Proof.

x(k + 1) = Wkx(k)

− αk
ck

(
ck∇F (x(k)) + c2kb(x(k)) + ckh(x(k))

)
. (35)

Denote xo = 1N ⊗ x∗. Then, we have,

x(k + 1)− xo = Wk(x(k)− xo)

− αk (∇F (x(k))−∇F (xo))



− αkh(x(k))− αk∇F (xo)− αkckb(x(k)). (36)

Moreover, note that, E [h(x(k)) | Fk] = 0. By Leibnitz rule, we have,

∇F (x(k))−∇F (xo)

=

[∫ 1

s=0

∇2F (xo + s(x(k)− xo)) ds

]
(x(k)− xo)

= Hk (x(k)− xo) . (37)

By Lipschitz continuity of the gradients and strong convexity of f(·), we have that LI < Hk < µI. Denote by
ζ(k) = x(k)− xo and by ξ(k) = (Wk − αkHk) (x(k)− xo)− αk∇F (xo). Then, there holds:

E[ ‖ζ(k + 1)‖2 | Fk ] ≤ E
[
‖ξ(k)‖2|Fk

]
− 2αkck E

[
ξ(k)>| Fk

]
E[h(x(k)) | Fk ] + α2

kc
2
k E[ ‖h(x(k))‖2 | Fk ]

+ α2
kc

2
kb
>(x(k))b(x(k))− 2αkckb

>(x(k))E [ξ(k)|Fk]

+ b (x(k))> E [h(x(k))|Fk] . (38)

We use the following inequalities:

ckb(xi(k))

=
ck
2
E
[
〈zi,k,∇2fi

(
xi(k) +

(1− θ1)

2
ckzi,k

)
zi,k〉zi,k|Fk

]
− ck

2
E
[
〈zi,k,∇2fi (xi(k) + (1− θ2) ckzi,k) zi,k〉zi,k|Fk

]
⇒ ck ‖b(xi(k))‖ ≤ c2k

4
Ms1(P ). (39)

− b>(x(k))E [ξ(k)|Fk]

= −2b>(x(k))
(
I− βkR− αkHk

)
(x(k)− xo)

+ 2αkb
>(x(k))∇F (xo)

≤ 2 ‖b(x(k))‖
∥∥I− βkR− αkHk

∥∥ ‖x(k)− xo‖

+ 2αk ‖b(x(k))‖ ‖∇F (xo)‖

≤
√
N

4
s1(P )Mck (1− µαk)

(
1 + ‖x(k)− xo‖2

)
+ αkck

√
N

2
s1(P )M ‖∇F (xo)‖

≤
√
N

4
s1(P )Mck +

√
N

4
s1(P )Mck ‖x(k)− xo‖2

+ αkck

√
N

2
s1(P )M ‖∇F (xo)‖ , (40)

b>(x(k))b(x(k)) ≤ N

16
s2

1(P )M2c2k, (41)

E[ ‖h(x(k))‖2 | Fk ] = E
[
‖vz(k;x(k))‖2 |Fk

]
+ E

[
‖g(x(k))− E [ĝ(x(k)) | Fk]‖2 | Fk

]
, (42)



E
[
‖g(x(k))− E [ĝ(x(k)) | Fk]‖2 | Fk

]
≤ E

[
‖g(x(k))‖2 | Fk

]
≤ 4Ns1(P )L2 ‖x(k)− xo‖2 + 4Ns1(P ) ‖∇F (xo)‖2 + 2Nc2ks2(P ), (43)

and

E
[
‖vz(k;x(k))‖2 |Fk

]
≤ dcv ‖x(k)‖2 + dNσ2

v

≤ 2dcv ‖x(k)− xo‖2 +
(

2dcv ‖xo‖2 +Nσ2
v

)
. (44)

Then from (38), we have,

E[ ‖ζ(k + 1)‖2 | Fk ] ≤ E
[
‖ξ(k)‖2|Fk

]
+

√
N

4
s1(P )Mαkc

2
k‖ζ(k)‖2 + 2

dα2
k

c2k
cv‖ζ(k)‖2

+
dα2

k

c2k

(
2cv ‖xo‖2 +Nσ2

v

)
+

√
N

4
s1(P )Mαkc

2
k

+
N

16
s2

1(P )M2α2
kc

4
k + α2

kc
2
k

√
N

2
s1(P )M ‖∇F (xo)‖

+ 4α2
kc

2
kNs1(P )L2‖ζ(k)‖2 + 4α2

kc
2
kNs1(P ) ‖∇F (xo)‖2

+ 2Nα2
kc

4
ks2(P ). (45)

We next bound E
[
‖ξ(k)‖2| Fk

]
. Note that ‖Wk − αkHk‖ ≤ 1− µαk. Therefore, we have:

‖ξ(k)‖ ≤ (1− µαk) ‖ζ(k)‖+ αk ‖∇F (xo)‖. (46)

We now use the following inequality:

(a+ b)2 ≤ (1 + θ) a2 +

(
1 +

1

θ

)
b2, (47)

for any a, b ∈ R and θ > 0. We set θ = µαk. Using the inequality (47) in (46) and we have ∀k ≥ k0, where
k0 = inf{k|µ2α2

k < 1}:

E
[
‖ξ(k)‖2 |Fk

]
≤ (1 + µαk) (1− αkµ)2 ‖ζ(k)‖2

+

(
1 +

1

µαk

)
α2
k‖∇F (xo)‖2

≤ (1− αkµ) ‖ζ(k)‖2 + 2
αk
µ
‖∇F (xo)‖2. (48)

Using (48) in (45), we have for all k ≥ k0

E[ ‖ζ(k + 1)‖2 | Fk ]

≤
(

1− αkµ+

√
N

4
s1(P )Mαkc

2
k + 2

dα2
k

c2k
cv

+4α2
kc

2
kNs1(P )L2)× ‖ζ(k)‖2

+
dα2

k

c2k

(
2cv ‖xo‖2 +Nσ2

v

)
+

√
N

4
s1(P )Lαkc

2
k



+
N

16
s2

1(P )M2α2
kc

4
k + 2

αk
µ
‖∇F (xo)‖2 + 2Nα2

kc
4
ks2(P )

+ α2
kc

2
k

√
N

2
s1(P )M ‖∇F (xo)‖+ 4α2

kc
2
kNs1(P ) ‖∇F (xo)‖2 . (49)

Define k1 as follows:

k1 = inf

{
k|µ

2
>

√
N

4
s1(P )Mc2k +

2dcvαk
c2k

+ 4αkc
2
kNs1(P )L2

}
.

It is to be noted that k1 is necessarily finite as ck → 0 and αkc
−2
k → 0 as k → ∞. We proceed by using the

following auxiliary lemma.

Lemma 5.2. Let ak ∈ (0, 1), u ≤ 0 and dk ≥ 0, for all k ≥ 1. If qk0 ≥ 0 and for all k ≥ k0 there holds

qk+1 ≤ (1− ak)qk + aku+ dk, then, for all k ≥ k0,

qk+1 ≤ qk0 + u+

k∑
l=l0

dl. (50)

Proof: Introduce p(k, l) = (1− ak) · · · (1− al), for l ≤ k and also p(k, k + 1) = 1. It is easy to see that, for

every k ≥ k0, qk+1 ≤ p(k, k0)qk0 + u
∑k
l=k0

p(k, l + 1)al +
∑k
l=k0

p(k, l + 1)dl. Note now that p(k, l + 1)al =

p(k, l+ 1)− p(k, l), and hence
∑k
l=k0

p(k, l+ 1)al = 1− p(k, k0) ≤ 1. Using the latter together with the fact that

p(k, l + 1) ≤ 1 proves the claim of the lemma.
Applying Lemma 5.2 to qk = E

[
‖ζ(k)‖2

]
, ak = µαk

2 , u = 4‖∇F (xo)‖2
µ2 , and dk defined as the remaining term

in (49) we have, ∀k ≥ max {k0, k1}
.
= k2,

E
[
‖ζ(k + 1)‖2

]
≤ qk2(N, d, α0, c0) + 4

‖∇F (xo)‖2

µ2

+

√
Ns1(P )Mα0c

2
0

8δ
+
Ns2

1(P )M2α2
0c

4
0

16(1 + 4δ)

+
dα2

0

(
2cvN ‖xo‖2 +Nσ2

v

)
c20(1− 2δ)

+
α2

0c
2
0

√
Ns1(P )L ‖∇F (xo)‖

1 + 2δ

+
2Nα2

0c
4
0s2(P )

1 + 4δ
+

4α2
0c

2
0Ns1(P )

1 + 2δ
‖∇F (xo)‖2

.
= q∞(N, d, α0, c0), (51)

From (51), we have that E
[
‖x(k + 1)− xo‖2

]
is finite and bounded from above, where E

[
‖x(k2)− xo‖2

]
≤

qk2(N, d, α0, c0). From the boundedness of E
[
‖x(k)− xo‖2

]
, we have also established the boundedness of E

[
‖∇F (x(k))‖2

]
and E

[
‖x(k)‖2

]
.

With the above development in place, we can bound the variance of the noise process {vz(k;x(k))} as follows:

E
[
‖vz(k;x(k))‖2 |Fk

]
≤ 2dcvq∞(N, d, α0, c0)

+ 2Nd
(
σ2
v + ‖x∗‖2

)
︸ ︷︷ ︸

σ2
1

. (52)

We also have the following bound:

E
[
‖g(x(k))− E [ĝ(x(k)) | Fk]‖2 | Fk

]



≤ 4Ns1(P )L2q∞(N, d, α0, c0) + 4Ns1(P ) ‖∇F (xo)‖2 + 2Nc2ks2(P ).

We now study the disagreement of the optimizer sequence {xi(k)} at a node i with respect to the (hypothetically

available) network averaged optimizer sequence, i.e., x(k) = 1
N

∑N
i=1 xi(k). Define the disagreement at the i-th

node as x̃i(k) = xi(k) − x(k). The vectorized version of the disagreements x̃i(k), i = 1, · · · , N , can then be

written as x̃(k) = (I− J)x(k), where J = 1
N (1N ⊗ Id) (1N ⊗ Id)

>
= 1

N 1N1>N ⊗ Id. We have the following

Lemma:

Lemma 5.3. Let the hypotheses of Theorem 3.1 hold. Then, we have

E
[
‖x̃(k + 1)‖2

]
≤ Qk +

4∆1,∞α
2
0

λ2
2

(
R
)
β2

0c
2
0(k + 1)2−2τ−2δ

= O

(
1

k2−2δ−2τ

)
,

where Qk is a term which decays faster than (k + 1)−2+2τ+2δ .

Lemma 5.3 plays a crucial role in providing a tight bound for the bias in the gradient estimates according to which

the global average x(k) evolves.

Proof. The process {x̃(k)} follows the recursion:

x̃(k + 1) = W̃kx̃(k)

− αk
ck

(I− J)
(
ck∇F (x(k)) + ckh(x(k)) + c2kb (x(k))

)︸ ︷︷ ︸
w(k)

, (53)

where W̃k = Wk − J. Then, we have,

‖x̃(k + 1)‖ ≤
∥∥∥W̃kx̃(k)

∥∥∥+
αk
ck
‖w(k)‖ . (54)

Using (47) in (53), we have,

‖x̃(k + 1)‖2 ≤ (1 + θk)
∥∥∥W̃kx̃(k)

∥∥∥2

+

(
1 +

1

θk

)
α2
k

c2k
‖w̃(k)‖2 . (55)

We, now bound the term E
[∥∥∥W̃kx̃(k)

∥∥∥2

|Fk
]

.

E
[∥∥∥W̃(k)x̃(k)

∥∥∥2

|Fk
]

= x̃>(k)E
[
W̃2(k)− J|Fk

]
x̃(k)

= x̃>(k)
(
I− 2βkR + β2

kR
2

+ R̃(k)2 − J
)
x̃(k)

≤
(
1− 2βkλ2

(
R
)

+ β2
kλ

2
N

(
R
)

+
4N2β0ρ

2
0

(k + 1)τ+ε
− 4β2

kN
2

)
‖x̃(k)‖2

≤
(

1− 2βkλ2

(
R
)

+
4N2β0ρ

2
0

(k + 1)τ+ε

)
‖x̃(k)‖2

≤
(
1− βkλ2

(
R
))
‖x̃(k)‖2 , (56)



where the last inequality follows from assumption A3. Then, we have,

E
[
‖x̃(k + 1)‖2 |Fk

]
≤ (1 + θk) (1− βkλ2

(
R
)
) ‖x̃(k)‖2

+

(
1 +

1

θk

)
α2
k

c2k
E
[
‖w(k)‖2 |Fk

]
, (57)

where

E
[
‖w(k)‖2 |Fk

]
≤ 3c2k ‖∇F (x(k))‖2 + 3c2kE

[
‖h(x(k))‖2 |Fk

]
+ 3c2k ‖b (x(k))‖2

≤ 3c2k ‖∇F (x(k))‖2 +
3

16
c4kNs

2
1(P )M2

+ 6dcvq∞(N, d, α0, c0) + 6dNσ2
1 + 6Nc4ks2(P )

+ 12c2kNs1(P )L2q∞(N, d, α0, c0) + 12c2kNs1(P ) ‖∇F (xo)‖2

⇒ E
[
‖w(k)‖2

]
≤ 3

(
2dcv + c2kL

2(1 + 4Ns1(P ))
)

× q∞(N, d, α0, c0)

+
3

16
c4kNs

2
1(P )M2 + 6Nc4ks2(P )

+ 6dNσ2
1 + 12c2kNs1(P ) ‖∇F (xo)‖2

= ∆1,∞ + c2k∆2,∞
.
= ∆k

⇒ E
[
‖w(k)‖2

]
<∞, (58)

where ∆1,∞ = 6dcvq∞(N, d, α0, c0)+6dNσ2
1 and c2k∆2,∞ = 3

16
c4kNs

2
1(P )M2 +3c2kL

2(1+4Ns1(P ))q∞(N, d, α0, c0)+

12c2kNs1(P ) ‖∇F (xo)‖2 + 6Nc4ks2(P ). With the above development in place, we then have,

E
[
‖x̃(k + 1)‖2

]
≤ (1 + θk)

(
1− βkλ2

(
R
))
‖x̃(k)‖2

+

(
1 +

1

θk

)
α2
k

c2k
∆k. (59)

In particular, we choose θ(k) = βk
2 λ2

(
R
)
. From (59), we have,

E
[
‖x̃(k + 1)‖2

]
≤
(

1− βk
2
λ2

(
R
))

E
[
‖x̃(k)‖2

]
+

(
1 +

2

βkλ2

(
R
)) α2

k

c2k
∆k

=

(
1− βk

2
λ2

(
R
))

E
[
‖x̃(k)‖2

]
+

2α2
k

λ2

(
R
)
c2kβk

∆k +
α2
k

c2k
∆k. (60)

For ease of analysis, define s(k) = βk
2 λ2

(
R
)
. We proceed by using the following technical lemma.

Lemma 5.4. If for all k ≥ k0 there holds

qk+1 ≤ (1− sk)qk +

(
1 +

1

sk

)
bkdk, (61)

where qk0 ≥ 0, sk ∈ (0, 1), dk, bk ≥ 0 are monotonously decreasing, then, for any k ≥ m(k) ≥ k0

qk+1 ≤ e−
∑k
l=k0

slqk0 + dk0e
−

∑k
l=m(k) sl

m(k)−1∑
l=k0

(
1 +

1

sl

)
bl

+ dm(k)bm(k)
sk + 1

s2
k

. (62)



Proof: Similarly as before, define p(k, l) = (1− sk) · · · (1− sl) for k0 ≤ l ≤ k, and let also p(k, k + 1) = 1.
Recall that p(k, l + 1)sl can be expressed as p(k, l + 1)sl = p(k, l + 1)− p(k, l). Then, we have:

qk+1 ≤ p(k, k0)qk0 +

k∑
l=k0

p(k, l)

(
1 +

1

sl
bldl

)
(63)

≤ p(k, k0)qk0 + dk0p(k,m(k))

m(k)∑
l=k0

(
1 +

1

sl

)
bl

+ bm(k)dm(k)
sk + 1

s2
k

k∑
m(k)

(p(k, l + 1)− p(k, l)) ,

where we break the sum in (63) at l = m(k), and use the fact that p (k,m(k)− 1) ≥ p(k, l) for every l ≤ m(k)−1,

together with the fact that 1/sl ≤ 1/sk, for every l ≤ k. Finally, noting that, for every l ≤ k, p(k, l) ≤ e−
∑k
m=1 sl ,

and also recalling that
∑k
m(k) (p(k, l + 1)− p(k, l)) ≤ 1, proves the claim of the lemma.

Applying the preceding lemma to qk = E
[
‖x̃(k)‖2

]
, dk = ∆k, bk =

α2
k

c2k
, and sk = βk

2 λ2

(
R
)

we have,

E
[
‖x̃(k + 1)‖2

]
≤ exp

(
−

k∑
l=0

s(l)

)
E
[
‖x̃(0)‖2

]
︸ ︷︷ ︸

t1

+ ∆0 exp

− k∑
m=b k−1

2
c

s(m)

 b k−1
2
c−1∑

l=0

(
2α2

l

λ2

(
R
)
c2l βl

+
α2
l

c2l

)
︸ ︷︷ ︸

t2

+
4∆b k−1

2
cα

2
0

λ2
2

(
R
)
β2

0c
2
0(k + 1)2−2τ−2δ︸ ︷︷ ︸
t3

+
2∆b k−1

2
cα

2
0

λ2

(
R
)
β0c20(k + 1)2−τ−2δ︸ ︷︷ ︸

t4

. (64)

In the above proof, the splitting in the interval [0, k] was done at bk−1
2 c for ease of book keeping. The division can

be done at an arbitrary point. It is to be noted that the sequence {s(k)} is not summable and hence terms t1 and t2
decay faster than (k + 1)2−2τ−2δ . Also, note that term t4 decays faster than t3. Furthermore, t3 can be written as

4∆b k−1
2
cα

2
0

λ2
2

(
R
)
β2

0c
2
0(k + 1)2−2τ−2δ

=
4∆1,∞α

2
0

λ2
2

(
R
)
β2

0c
2
0(k + 1)2−2τ−2δ︸ ︷︷ ︸
t31

+
4c2b k−1

2
c∆2,∞α

2
0

λ2
2

(
R
)
β2

0c
2
0(k + 1)2−2τ−2δ︸ ︷︷ ︸
t32

,

from which we have that t32 decays faster than t31. For notational ease, henceforth we refer to t1+t2+t32+t4 = Qk,
while keeping in mind that Qk decays faster than (k + 1)2−2τ−2δ . Hence, we have the disagreement given by,

E
[
‖x̃(k + 1)‖2

]
= O

(
1

k2−2δ−2τ

)
.

We now proceed to the proof of Theorem 3.1. Denote x(k) = 1
N

∑
n=1 xi(k). Then, we have,

x(k + 1) = x(k)



− αk
ck

ckN
N∑
i=1

∇fi (xi(k)) +
c2k
N

N∑
i=1

bi (xi(k))︸ ︷︷ ︸
b (x(k))

+
ck
N

N∑
i=1

hi(xi(k))︸ ︷︷ ︸
h(x(k))


⇒ x(k + 1) = x(k)− αk

ck

(
h(x(k)) + b (x(k))

)
− αk
Nck

[
ck

N∑
i=1

∇fi (xi(k))−∇fi (x(k)) +∇fi (x(k))

]
. (65)

Recall that f(·) =
∑N
i=1 fi(·). Then, we have,

x(k + 1) = x(k)− αk
ck

(
h(x(k)) + b (x(k))

)
− αk
N
∇f (x(k))− αk

N

[
N∑
i=1

∇fi (xi(k))−∇fi (x(k))

]
⇒ x(k + 1) = x(k)− αk

Nck
[ck∇f (x(k)) + e(k)] , (66)

where

e(k) = Nh(x(k))

+Nb (x(k)) + ck

N∑
i=1

(∇fi (xi(k))−∇fi (x(k)))︸ ︷︷ ︸
ε(k)

. (67)

Note that, ck ‖∇fi (xi(k))−∇fi (x(k))‖ ≤ ckL ‖xi(k)− x(k)‖ = ckL ‖x̃i(k)‖. We also have that,
∥∥b (x(k))

∥∥ ≤
M
4 s1(P )c3k. Thus, we can conclude that, ∀k ≥ k3

ε(k) = ck

N∑
i=1

(∇fi (xi(k))−∇fi (x(k))) +Nb (x(k))

⇒ ‖ε(k)‖2 ≤ 2NL2c2k ‖x̃(k)‖2 +
N

8
M2d2(P )c6k

⇒ E
[
‖ε(k)‖2

]
≤ 8NL2∆1,∞α

2
0

λ2
2

(
R
)
β2

0(k + 1)2−2τ
+
NM2d2(P )c60

8(k + 1)6δ

+
2NL2Qkc

2
0

(k + 1)2δ
. (68)

With the above development in place, we rewrite (66) as follows:

x(k + 1) = x(k)− αk
N
∇f (x(k))− αk

Nck
ε(k)− αk

ck
h(x(k))

⇒ x(k + 1)− x∗ = x(k)− x∗ − αk
N

∇f (x(k))−∇f (x∗)︸ ︷︷ ︸
= 0


− αk
Nck

ε(k)− αk
ck

h(x(k)). (69)

By Leibnitz rule, we have,

∇f (x(k))−∇f (x∗)



=

[∫ 1

s=0

∇2f (x∗ + s (x(k)− x∗)) ds

]
︸ ︷︷ ︸

Hk

(x(k)− x∗) , (70)

where it is to be noted that NL < Hk < Nµ. Using (70) in (69), we have,

(x(k + 1)− x∗) =
[
I− αk

N
Hk

]
(x(k)− x∗)

− αk
Nck

ε(k)− αk
ck

h(x(k)). (71)

Denote by m(k) =
[
I− αk

N Hk

]
(x(k)− x∗) − αk

Nck
ε(k) and note that m(k) is conditionally independent from

h(x(k)) given the history Fk. Then (71) can be rewritten as:

(x(k + 1)− x∗) = m(k)− αk
ck

h(x(k))

⇒ ‖x(k + 1)− x∗‖2 ≤ ‖m(k)‖2 − 2
αk
ck

m(k)>h(x(k))

+
α2
k

c2k

∥∥h(x(k))
∥∥2
. (72)

Using the properties of conditional expectation and noting that E [h(x(k))|Fk] = 0, we have,

E
[
‖x(k + 1)− x∗‖2 |Fk

]
≤ ‖m(k)‖2 +

α2
k

c2k
E
[∥∥h(x(k))

∥∥2 |Fk
]

⇒ E
[
‖x(k + 1)− x∗‖2

]
≤ E

[
‖m(k)‖2

]
+ 2Nα2

kc
2
ks2(P )

+
2α2

k

(
dcvq∞(N, d, α0, c0) + dNσ2

1

)
c2k

+ 4α2
kNs1(P )L2q∞(N, d, α0, c0) + 4α2

kNs1(P ) ‖∇F (xo)‖2 . (73)

For notational simplicity, we denote α2
kσ

2
h = 2Nα2

kc
2
ks2(P )+4α2

kNs1(P )L2q∞(N, d, α0, c0)+4α2
kNs1(P ) ‖∇F (xo)‖2.

Using (47), we have for m(k),

‖m(k)‖2 ≤ (1 + θk)
∥∥∥I− αk

N
Hk

∥∥∥2

‖x(k)− x∗‖2

+

(
1 +

1

θk

)
α2
k

N2c2k
‖ε(k)‖2

≤ (1 + θk)

(
1− µα0

k + 1

)2

‖x(k)− x∗‖2

+

(
1 +

1

θk

)
α2
k

N2c2k
‖ε(k)‖2 . (74)

On choosing θk = µα0

k+1 , where α0 >
1
µ , we have,

E
[
‖m(k)‖2

]
≤
(

1− µα0

k + 1

)
E
[
‖x(k)− x∗‖2

]
+

16L2∆1,∞Nα
3
0

µλ2
2

(
R
)
c20β

2
0(k + 1)3−2τ−2δ

+
4M2Nd2(P )c40α0

µ(k + 1)1+4δ
+

4L2NQk
µ(k + 1)

⇒ E
[
‖x(k + 1)− x∗‖2

]
≤
(

1− µα0

k + 1

)
E
[
‖x(k)− x∗‖2

]
+

16NL2∆1,∞α
3
0

µλ2
2

(
R
)
c20β

2
0(k + 1)3−2τ−2δ

+
4NM2d2(P )c40α0

µ(k + 1)1+4δ
+

4NL2Qk
µ(k + 1)

+
2α2

k

(
dcvq∞(N, d, α0, c0) + dNσ2

1

)
c2k

+ α2
kσ

2
h

⇒ E
[
‖x(k + 1)− x∗‖2

]
≤
(

1− µα0

k + 1

)
E
[
‖x(k)− x∗‖2

]



+
16NL2∆1,∞α

3
0

µλ2
2

(
R
)
c20β

2
0(k + 1)3−2τ−2δ

+
4M2Nd2(P )c40α0

µ(k + 1)1+4δ
+

2α2
0

(
dcvq∞(N, d, α0, c0) + dNσ2

1

)
c20(k + 1)2−2δ

+ Pk, (75)

where Pk = 4NL2Qk
µ(k+1) +

α2
0σ

2
h

(k+1)2 decays faster as compared to the other terms. Proceeding as in (64), we have

E
[
‖x(k + 1)− x∗‖2

]
≤ exp

(
−µ

k∑
l=0

αl

)
E
[
‖x(k)− x∗‖2

]
︸ ︷︷ ︸

t6

+ exp

−µ k∑
m=b k−1

2
c

αm

 b k−1
2
c−1∑

l=0

16NL2∆1,∞α
3
0

µλ2
2

(
R
)
c20β

2
0(k + 1)3−2τ−2δ︸ ︷︷ ︸

t7

+ exp

− µ
N

k∑
m=b k−1

2
c

αm

 b k−1
2
c−1∑

l=k5

4M2Nd2(P )c40α0

µ(k + 1)1+4δ

︸ ︷︷ ︸
t8

+ exp

−µ k∑
m=b k−1

2
c

αm

 b k−1
2
−1∑

l=0

Pl +
2α2

0dcvq∞(N, d, α0, c0)

c20(l + 1)2−2δ

︸ ︷︷ ︸
t10

+ exp

−µ k∑
m=b k−1

2
c

αm

 b k−1
2
−1∑

l=0

2α2
0dNσ

2
1

c20(l + 1)2−2δ

︸ ︷︷ ︸
t11

+
32NL2∆1,∞α

2
0

µ2λ2
2

(
R
)
c20β

2
0(k + 1)2−2τ−2δ︸ ︷︷ ︸
t12

+
8NM2d2(P )c40
µ2(k + 1)4δ︸ ︷︷ ︸

t13

+
N(k + 1)Pk

µα0︸ ︷︷ ︸
t14

+
4Nα0

(
dcvq∞(N, d, α0, c0) + dNσ2

1

)
µc20(k + 1)1−2δ︸ ︷︷ ︸

t15

. (76)

It is to be noted that the term t6 decays as 1/k. The terms t7, t8, t10, t11 and t14 decay faster than its
counterparts in the terms t12, t13 and t15 respectively. We note that Ql also decays faster. Hence, the rate of decay
of E

[
‖x(k + 1)− x∗‖2

]
is determined by the terms t12, t13 and t15. Thus, we have that, E

[
‖x(k + 1)− x∗‖2

]
=

O
(
k−δ1

)
, where δ1 = min {1− 2δ, 2− 2τ − 2δ, 4δ}. For notational ease, we refer to t6 +t7 +t8 +t10 +t11 +t14 =

Mk from now on. Finally, we note that,

‖xi(k)− x∗‖ ≤ ‖x(k)− x∗‖+

∥∥∥∥∥∥∥xi(k)− x(k)︸ ︷︷ ︸
x̃i(k)

∥∥∥∥∥∥∥
⇒ ‖xi(k)− x∗‖2 ≤ 2 ‖x̃i(k)‖2 + 2 ‖x(k)− x∗‖2

⇒ E
[
‖xi(k)− x∗‖2

]
≤ 2Mk +

64NL2∆1,∞α
2
0

µ2λ2
2

(
R
)
c20β

2
0(k + 1)2−2τ−2δ



+
16NM2d2(P )c40
µ2(k + 1)4δ

+ 2Qk +
8∆1,∞α

2
0

λ2
2

(
R
)
β2

0c
2
0(k + 1)2−2τ−2δ

+
4Nα0

(
dcvq∞(N, d, α0, c0) + dNσ2

1

)
µc20(k + 1)1−2δ

⇒ E
[
‖xi(k)− x∗‖2

]
= O

(
1

kδ1

)
, ∀i, (77)

where δ1 = min {1− 2δ, 2− 2τ − 2δ, 4δ}. By, optimizing over τ and δ, we obtain that for τ = 1/2 and δ = 1/6,

E
[
‖xi(k)− x∗‖2

]
= O

(
1

k
2
3

)
, ∀i.

The communication cost is given by,

E

[
k∑
t=1

ζt

]
= O

(
k

3
4

+ ε
2

)
.

Thus, we achieve the communication rate to be,

E
[
‖xi(k)− x?‖2

]
= O

(
1

C8/9−ζ
k

)
, (78)

where ζ can be arbitrarily small.

6. PROOF OF THE MAIN RESULT: FIRST ORDER OPTIMIZATION

Lemma 6.1. Consider algorithm (26), and let the hypotheses of Theorem 3.2 hold. Then, we have that for all

k = 0, 1, ..., there holds:

E
[
‖x(k)− xo‖2

]
≤ qk0(N,α0)

+
π2

6
α2

0

(
2cuN ‖xo‖2 +Nσ2

u

)
+ 4
‖∇F (xo)‖2

µ2

.
= q∞(N,α0),

where E
[
‖x(k2)− xo‖2

]
≤ qk2(N,α0), k2 = max{k0, k1}, k0 = inf{k|µ2α2

k < 1} and k1 = inf
{
k|µ2 > 2cuαk

}
.

Proof: Proceeding as in the proof of Lemma 5.1, with ck = 1 and b(x(k)) = 0, we have that, ∀k ≥
max {k0, k1},

E
[
‖ζ(k + 1)‖2

]
≤

k∏
l=k0

(
1− µαl

2

)
E
[
‖ζ(k0)‖2

]
+
π2

6
α2

0

(
2cuN ‖xo‖2 +Nσ2

u

)
+ 4
‖∇F (xo)‖2

µ2

E
[
‖ζ(k + 1)‖2

]
≤ qk2(N,α0) +

π2

6
α2

0

(
2cuN ‖xo‖2 +Nσ2

u

)
+ 4
‖∇F (xo)‖2

µ2

.
= q∞(N,α0), (79)

where k0 = inf{k|µ2α2
k < 1} and

k1 = inf
{
k|µ

2
> 2cuαk

}
.

and k2 = max{k0, k1}. It is to be noted that k1 is necessarily finite as αk → 0 as k → ∞. Hence, we

have that E
[
‖x(k + 1)− xo‖2

]
is finite and bounded from above, where E

[
‖x(k2)− xo‖2

]
≤ qk2(N,α0).



From the boundedness of E
[
‖x(k)− xo‖2

]
, we have also established the boundedness of E

[
‖∇F (x(k))‖2

]
and

E
[
‖x(k)‖2

]
.

With the above development in place, we can bound the variance of the noise process {v(k)} as follows:

E
[
‖u(k)‖2 |Sk

]
≤ 2cuq∞(N,α0)

+ 2N
(
σ2
u + ‖x∗‖2

)
︸ ︷︷ ︸

σ2
1

. (80)

The proof of Lemma 6.1 is now complete.

Recall the (hypothetically available) global average of nodes’ estimates x(k) = 1
N

∑N
i=1 xi(k), and denote by

x̃i(k) = xi(k)−x(k) the quantity that measures how far apart is node i’s solution estimate from the global average.

Introduce also vector x̃(k) = ( x̃1(k), ..., x̃N (k) )>, and note that it can be represented as x̃(k) = (I− J)x(k),

where we recall J = 1
N 11>. We have the following Lemma.

Lemma 6.2. Let the hypotheses of Theorem 3.2 hold. Then, we have

E
[
‖x̃(k + 1)‖2

]
≤ Qk +

2∆1,∞α
2
0

λ2
2

(
R
)
β2

0(k + 1)

= O

(
1

k

)
,

where Qk is a term which decays faster than (k + 1)−1.

Lemma 6.2 is important as it allows to sufficiently tightly bound the bias in the gradient estimates according to

which the global average x(k) evolves.
Proof: Proceeding as in the proof of Lemma 5.3 in (53)-(56), we have,

E
[
‖x̃(k + 1)‖2 |Sk

]
≤ (1 + θk)

(
1− βkλ2

(
R
))
‖x̃(k)‖2

+

(
1 +

1

θk

)
α2
kE
[
‖w(k)‖2 |Fk

]
, (81)

where

E
[
‖w(k)‖2 |Sk

]
≤ 2 ‖∇F (x(k))‖2 + 2E

[
‖v(k)‖2 |Fk

]
≤ 2 ‖∇F (x(k))‖2 + 4cuq∞(N,α0) + 4Nσ2

1︸ ︷︷ ︸
∆1,∞

⇒ E
[
‖w(k)‖2

]
<∞. (82)

With the above development in place, we then have,

E
[
‖x̃(k + 1)‖2

]
≤ (1 + θk)

(
1− βkλ2

(
R
))
‖x̃(k)‖2

+

(
1 +

1

θk

)
α2
k∆1,∞. (83)

In particular, we choose θ(k) = βk
2 λ2

(
R
)
. From (59), we have,

E
[
‖x̃(k + 1)‖2

]
≤
(

1− βk
2
λ2

(
R
))

E
[
‖x̃(k)‖2

]
+

(
1 +

2

βkλ2

(
R
))α2

k∆1,∞

=

(
1− βk

2
λ2

(
R
))

E
[
‖x̃(k)‖2

]



+
2α2

k

λ2

(
R
)
βk

∆1,∞ + α2
k∆1,∞. (84)

Applying lemma 5.4 to qk = E
[
‖x̃(k)‖2

]
, dk = ∆k, bk = α2

k, and sk = βk
2 λ2

(
R
)
, we obtain for m(k) = bk−1

2 c:

E
[
‖x̃(k + 1)‖2

]
≤ exp

(
−

k∑
l=0

s(l)

)
E
[
‖x̃(0)‖2

]
︸ ︷︷ ︸

t1

+ ∆1,∞ exp

− k∑
m=b k−1

2
c

s(m)

 b k−1
2
c−1∑

l=0

(
2α2

l

λ2

(
R
)
βl

+ α2
l

)
︸ ︷︷ ︸

t2

+
2∆1,∞α

2
0

λ2
2

(
R
)
β2

0(k + 1)︸ ︷︷ ︸
t3

+
4∆1,∞α

2
0

λ2

(
R
)
β0(k + 1)3/2︸ ︷︷ ︸
t4

. (85)

In the proof of Lemma 5.4, the splitting in the interval [0, k] was done at bk−1
2 c for ease of book keeping. The

division can be done at an arbitrary point. It is to be noted that the sequence {s(k)} is not summable and hence
terms t1 and t2 decay faster than (k + 1). Also, note that term t4 decays faster than t3. For notational ease,
henceforth we refer to t1 + t2 + t4 = Qk, while keeping in mind that Qk decays faster than (k + 1). Hence, we
have the disagreement given by,

E
[
‖x̃(k + 1)‖2

]
= O

(
1

k

)
.

Lemma 6.3. Consider algorithm (26) and let the hypotheses of Theorem 3.2 hold. Then, there holds:

E[ ‖xi(k)− x?‖2 ] = O(1/k).

and

E[ ‖xi(k)− x?‖2 ] = O

(
1

C4/3−ζ
k

)
,

where ζ > 0 can be arbitrarily small, for all i = 1, · · · , N .

Proof: Denote x(k) = 1
N

∑
n=1 xi(k). Then, we have,

x(k + 1) = x(k)− αk

 1

N

N∑
i=1

∇fi (xi(k)) +
1

N

N∑
i=1

ui(k)︸ ︷︷ ︸
u(k)

 (86)

which implies:

x(k + 1) = x(k)− αk
N

[
N∑
i=1

∇fi (xi(k))

−∇fi (x(k)) +∇fi (x(k))]− αku(k).

where

e(k) = Nu(k)



+

N∑
i=1

(∇fi (xi(k))−∇fi (x(k)))︸ ︷︷ ︸
ε(k)

. (87)

Proceeding as in (68)-(74), with ck = 1 and b(xi(k)) = 0, ∀i = 1, · · · , N , we have on choosing θk = µα0

k+1 , where
α0 >

1
µ ,

E
[
‖m(k)‖2

]
≤
(

1− µα0

k + 1

)
E
[
‖x(k)− x∗‖2

]
+

8NL2∆1,∞α
3
0

µλ2
2

(
R
)
β2

0(k + 1)2
+

2NL2Qk
µ(k + 1)

⇒ E
[
‖x(k + 1)− x∗‖2

]
≤
(

1− µα0

k + 1

)
E
[
‖x(k)− x∗‖2

]
+

8NL2∆1,∞α
3
0

µλ2
2

(
R
)
β2

0(k + 1)2
+

2NL2Qk
µ(k + 1)

+ 2α2
k

(
cuq∞(N,α0) +Nσ2

1

)
⇒ E

[
‖x(k + 1)− x∗‖2

]
≤
(

1− µα0

k + 1

)
E
[
‖x(k)− x∗‖2

]
+

8NL2∆1,∞α
3
0

µλ2
2

(
R
)
β2

0(k + 1)2
+ 2α2

k

(
cuq∞(N,α0) +Nσ2

1

)
+ Pk, (88)

where Pk decays faster as compared to the other terms. Proceeding as in (64), we have

E
[
‖x(k + 1)− x∗‖2

]
≤ exp

(
−µ

k∑
l=0

αl

)
E
[
‖x(k)− x∗‖2

]
︸ ︷︷ ︸

t6

+ exp

−µ k∑
m=b k−1

2
c

αm

 b k−1
2
c−1∑

l=0

8L2∆1,∞α
3
0

µλ2
2

(
R
)
β2

0(l + 1)2︸ ︷︷ ︸
t7

+ exp

−µ k∑
m=b k−1

2
c

αm

 b k−1
2
−1∑

l=0

Pl

︸ ︷︷ ︸
t10

+ exp

−µ k∑
m=b k−1

2
c

αm

 b k−1
2
−1∑

l=0

2α2
0

(
cuq∞(N,α0) +Nσ2

1

)
(l + 1)2

︸ ︷︷ ︸
t11

+
16NL2∆1,∞α

2
0

µ2λ2
2

(
R
)
β2

0(k + 1)︸ ︷︷ ︸
t12

+
N(k + 1)Pk

µα0︸ ︷︷ ︸
t14

+
4Nα0

(
cuq∞(N,α0) +Nσ2

1

)
µ(k + 1)︸ ︷︷ ︸

t15

. (89)

It is to be noted that the term t6 decays as 1/k. The terms t7, t10 and t11 decay faster than its counterparts in the
terms t12 and t15 respectively. We note that Ql also decays faster. Hence, the rate of decay of E

[
‖x(k + 1)− x∗‖2

]
is determined by the terms t12 and t15. Thus, we have that, E

[
‖x(k + 1)− x∗‖2

]
= O

(
1
k

)
. For notational ease,



we refer to t6 + t7 + t10 + t11 + t14 = Mk from now on. Finally, we note that,

‖xi(k)− x∗‖ ≤ ‖x(k)− x∗‖+

∥∥∥∥∥∥∥xi(k)− x(k)︸ ︷︷ ︸
x̃i(k)

∥∥∥∥∥∥∥
⇒ ‖xi(k)− x∗‖2 ≤ 2 ‖x̃i(k)‖2 + 2 ‖x(k)− x∗‖2

⇒ E
[
‖xi(k)− x∗‖2

]
≤ 2Mk +

32NL2∆1,∞α
2
0

µ2λ2
2

(
R
)
β2

0(k + 1)

+ 2Qk +
4∆1,∞α

2
0

λ2
2

(
R
)
β2

0(k + 1)

⇒ E
[
‖xi(k)− x∗‖2

]
= O

(
1

k

)
, ∀i. (90)

The communication cost is given by,

E

[
k∑
t=1

ζt

]
= O

(
k

3
4

+ ε
2

)
.

Thus, we achieve the communication rate to be,

E
[
‖xi(k)− x?‖2

]
= O

 1

C
4
3
−ζ

k

 . (91)

7. CONCLUSION

In this paper, we have developed and analyzed a novel class of methods for distributed stochastic optimization of the

zeroth and first order that are based on increasingly sparse randomized communication protocols. We have established

for both the proposed zeroth and first order methods explicit mean square error (MSE) convergence rates with respect

to (appropriately defined) computational cost Ccomp and communication cost Ccomm. Specifically, the proposed

zeroth order method achieves the O(1/(Ccomm)8/9−ζ) MSE communication rate, which significantly improves

over the rates of existing methods, while maintaining the order-optimal O(1/(Ccomp)2/3) MSE computational

rate. Similarly, the proposed first order method achieves the O(1/(Ccomm)4/3−ζ) MSE communication rate, while

maintaining the order-optimal O(1/(Ccomp)) MSE computational rate. Numerical examples on real data demonstrate

the communication efficiency of the proposed methods.
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